BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 23121958)

  • 1. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers.
    Dash R; Foston M; Ragauskas AJ
    Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.
    Bode F; da Silva MA; Drake AF; Ross-Murphy SB; Dreiss CA
    Biomacromolecules; 2011 Oct; 12(10):3741-52. PubMed ID: 21819136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels.
    Dawlee S; Sugandhi A; Balakrishnan B; Labarre D; Jayakrishnan A
    Biomacromolecules; 2005; 6(4):2040-8. PubMed ID: 16004443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells.
    Wang LS; Du C; Chung JE; Kurisawa M
    Acta Biomater; 2012 May; 8(5):1826-37. PubMed ID: 22343003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(methyl vinyl ether-co-maleic acid)-polyethylene glycol nanocomposites cross-linked in situ with cellulose nanowhiskers.
    Goetz L; Foston M; Mathew AP; Oksman K; Ragauskas AJ
    Biomacromolecules; 2010 Oct; 11(10):2660-6. PubMed ID: 20857999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and biocompatibility of in situ enzymatically cross-linked gelatin hydrogels.
    Alarake NZ; Frohberg P; Groth T; Pietzsch M
    Int J Artif Organs; 2017 May; 40(4):159-168. PubMed ID: 28315501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent and ionic co-cross-linking--an original way to prepare chitosan-gelatin hydrogels for biomedical applications.
    Jătariu Cadinoiu AN; Popa M; Curteanu S; Peptu CA
    J Biomed Mater Res A; 2011 Sep; 98(3):342-50. PubMed ID: 21626665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and rheological properties of methacrylamide modified gelatin hydrogels.
    Van Den Bulcke AI; Bogdanov B; De Rooze N; Schacht EH; Cornelissen M; Berghmans H
    Biomacromolecules; 2000; 1(1):31-8. PubMed ID: 11709840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid, in situ gelable hydrogel composed of teleostean and alginate.
    Zhang H; Liao H; Chen W
    J Biomater Sci Polym Ed; 2009; 20(13):1915-28. PubMed ID: 19793447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin-based biomaterial engineering with anhydride-containing oligomeric cross-linkers.
    Loth T; Hötzel R; Kascholke C; Anderegg U; Schulz-Siegmund M; Hacker MC
    Biomacromolecules; 2014 Jun; 15(6):2104-18. PubMed ID: 24806218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources.
    Liao H; Zhang H; Chen W
    J Mater Sci Mater Med; 2009 Jun; 20(6):1263-71. PubMed ID: 19184370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of in-situ crosslinked pectin-gelatin hydrogels.
    Gupta B; Tummalapalli M; Deopura BL; Alam MS
    Carbohydr Polym; 2014 Jun; 106():312-8. PubMed ID: 24721084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.
    Liu Y; Geever LM; Kennedy JE; Higginbotham CL; Cahill PA; McGuinness GB
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):203-9. PubMed ID: 20129419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration.
    Nguyen TP; Lee BT
    J Biomater Appl; 2012 Sep; 27(3):311-21. PubMed ID: 21680610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinoglycan dialdehyde-reinforced gelatin hydrogels with toughness and thermal stability.
    Kim S; Jeong D; Lee H; Kim D; Jung S
    Int J Biol Macromol; 2020 Apr; 149():281-289. PubMed ID: 31982524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chemical cross-linking on gelatin membrane solubility with a non-toxic and non-volatile agent: terephthalaldehyde.
    Biscarat J; Galea B; Sanchez J; Pochat-Bohatier C
    Int J Biol Macromol; 2015 Mar; 74():5-11. PubMed ID: 25478961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus.
    Borges AC; Eyholzer C; Duc F; Bourban PE; Tingaut P; Zimmermann T; Pioletti DP; Månson JA
    Acta Biomater; 2011 Sep; 7(9):3412-21. PubMed ID: 21651996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.