These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 23122151)
21. Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography. Li HM; Kim JK; Jang JM; Cui CB; Lim SS Arch Pharm Res; 2013 Sep; 36(9):1104-12. PubMed ID: 23645536 [TBL] [Abstract][Full Text] [Related]
22. Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Matsuda H; Morikawa T; Toguchida I; Harima S; Yoshikawa M Chem Pharm Bull (Tokyo); 2002 Jul; 50(7):972-5. PubMed ID: 12130858 [TBL] [Abstract][Full Text] [Related]
23. α-Glucosidase and aldose reductase inhibitory activities from the fruiting body of Phellinus merrillii. Huang GJ; Hsieh WT; Chang HY; Huang SS; Lin YC; Kuo YH J Agric Food Chem; 2011 May; 59(10):5702-6. PubMed ID: 21452825 [TBL] [Abstract][Full Text] [Related]
24. Flavonoids from Litsea japonica Inhibit AGEs Formation and Rat Lense Aldose Reductase In Vitro and Vessel Dilation in Zebrafish. Lee IS; Kim YJ; Jung SH; Kim JH; Kim JS Planta Med; 2017 Feb; 83(3-04):318-325. PubMed ID: 27690380 [TBL] [Abstract][Full Text] [Related]
25. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. Jung HA; Yoon NY; Kang SS; Kim YS; Choi JS J Pharm Pharmacol; 2008 Sep; 60(9):1227-36. PubMed ID: 18718128 [TBL] [Abstract][Full Text] [Related]
26. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme. Kwon EK; Lee DY; Lee H; Kim DO; Baek NI; Kim YE; Kim HY J Agric Food Chem; 2010 Jan; 58(2):882-6. PubMed ID: 20038104 [TBL] [Abstract][Full Text] [Related]
27. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Jung HA; Islam MN; Lee CM; Oh SH; Lee S; Jung JH; Choi JS Chem Biol Interact; 2013 Oct; 206(1):55-62. PubMed ID: 23994501 [TBL] [Abstract][Full Text] [Related]
28. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications. Saraswat M; Muthenna P; Suryanarayana P; Petrash JM; Reddy GB Asia Pac J Clin Nutr; 2008; 17(4):558-65. PubMed ID: 19114390 [TBL] [Abstract][Full Text] [Related]
29. Isoflavonoids from the rhizomes of Belamcanda chinensis and their effects on aldose reductase and sorbitol accumulation in streptozotocin induced diabetic rat tissues. Jung SH; Lee YS; Lee S; Lim SS; Kim YS; Shin KH Arch Pharm Res; 2002 Jun; 25(3):306-12. PubMed ID: 12135102 [TBL] [Abstract][Full Text] [Related]
31. Aldose reductase inhibitory effect by tectorigenin derivatives from Viola hondoensis. Moon HI; Jung JC; Lee J Bioorg Med Chem; 2006 Nov; 14(22):7592-4. PubMed ID: 16870454 [TBL] [Abstract][Full Text] [Related]
32. Decorosides A and B, cytotoxic flavonoid glycosides from the leaves of Rhododendron decorum. Rateb ME; Hassan HM; Arafa el-SA; Jaspars M; Ebel R Nat Prod Commun; 2014 Apr; 9(4):473-6. PubMed ID: 24868859 [TBL] [Abstract][Full Text] [Related]
33. The aldose reductase inhibitory capacity of Sorbus domestica fruit extracts depends on their phenolic content and may be useful for the control of diabetic complications. Termentzi A; Alexiou P; Demopoulos VJ; Kokkalou E Pharmazie; 2008 Sep; 63(9):693-6. PubMed ID: 18819524 [TBL] [Abstract][Full Text] [Related]
34. Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Jang DS; Yoo NH; Lee YM; Yoo JL; Kim YS; Kim JS Arch Pharm Res; 2008 Jul; 31(7):900-4. PubMed ID: 18704333 [TBL] [Abstract][Full Text] [Related]
35. Inhibitors of aldose reductase and advanced glycation end-products formation from the leaves of Stelechocarpus cauliflorus R.E. Fr. Wirasathien L; Pengsuparp T; Suttisri R; Ueda H; Moriyasu M; Kawanishi K Phytomedicine; 2007 Aug; 14(7-8):546-50. PubMed ID: 17084603 [TBL] [Abstract][Full Text] [Related]
36. Screening of Korean forest plants for rat lens aldose reductase inhibition. Kim HY; Oh JH Biosci Biotechnol Biochem; 1999 Jan; 63(1):184-8. PubMed ID: 10052140 [TBL] [Abstract][Full Text] [Related]
37. In vitro and in vivo inhibitory activities of four Indian medicinal plant extracts and their major components on rat aldose reductase and generation of advanced glycation endproducts. Rao AR; Veeresham C; Asres K Phytother Res; 2013 May; 27(5):753-60. PubMed ID: 22826152 [TBL] [Abstract][Full Text] [Related]
38. Isolation, modification and cytotoxic evaluation of flavonoids from Rhododendron hainanense. Zhao J; Ding HX; Zhao DG; Wang CM; Gao K J Pharm Pharmacol; 2012 Dec; 64(12):1785-92. PubMed ID: 23146042 [TBL] [Abstract][Full Text] [Related]
39. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Yoo NH; Jang DS; Lee YM; Jeong IH; Cho JH; Kim JH; Kim JS Arch Pharm Res; 2010 Feb; 33(2):209-14. PubMed ID: 20195820 [TBL] [Abstract][Full Text] [Related]
40. Inhibitory effect of two Indian medicinal plants on aldose reductase of rat lens in vitro. Kumar R; Patel DK; Laloo D; Sairam K; Hemalatha S Asian Pac J Trop Med; 2011 Sep; 4(9):694-7. PubMed ID: 21967691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]