These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23122209)

  • 21. [Diversity of Cuproproteins and Copper Homeostasis Systems in Melioribacter roseus, a Facultatively Anaerobic Thermophilic Member of a New Phylum Ignavibacteriae].
    Karnachuk OV; Gavrilov SN; Avakyan MR; Podosokorskaya OA; Frank YA; Bonch-Osmolovskaya EA; Kublanov IB
    Mikrobiologiia; 2015; 84(2):165-74. PubMed ID: 26263622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli.
    Outten FW; Huffman DL; Hale JA; O'Halloran TV
    J Biol Chem; 2001 Aug; 276(33):30670-7. PubMed ID: 11399769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni.
    Hall SJ; Hitchcock A; Butler CS; Kelly DJ
    J Bacteriol; 2008 Dec; 190(24):8075-85. PubMed ID: 18931123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper homeostasis networks in the bacterium
    Quintana J; Novoa-Aponte L; Argüello JM
    J Biol Chem; 2017 Sep; 292(38):15691-15704. PubMed ID: 28760827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge.
    Bersch B; Favier A; Schanda P; van Aelst S; Vallaeys T; Covès J; Mergeay M; Wattiez R
    J Mol Biol; 2008 Jul; 380(2):386-403. PubMed ID: 18533181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli.
    Mealman TD; Blackburn NJ; McEvoy MM
    Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ABCDs of periplasmic copper trafficking.
    Puig S; Rees EM; Thiele DJ
    Structure; 2002 Oct; 10(10):1292-5. PubMed ID: 12377116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of copper homeostasis in bacteria.
    Argüello JM; Raimunda D; Padilla-Benavides T
    Front Cell Infect Microbiol; 2013; 3():73. PubMed ID: 24205499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria.
    Pontel LB; Soncini FC
    Mol Microbiol; 2009 Jul; 73(2):212-25. PubMed ID: 19538445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene cluster analysis method identifies horizontally transferred genes with high reliability and indicates that they provide the main mechanism of operon gain in 8 species of gamma-Proteobacteria.
    Homma K; Fukuchi S; Nakamura Y; Gojobori T; Nishikawa K
    Mol Biol Evol; 2007 Mar; 24(3):805-13. PubMed ID: 17185745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and physiological role of three Myxococcus xanthus copper-dependent P1B-type ATPases during bacterial growth and development.
    Moraleda-Muñoz A; Pérez J; Extremera AL; Muñoz-Dorado J
    Appl Environ Microbiol; 2010 Sep; 76(18):6077-84. PubMed ID: 20656859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptor protein mediates dynamic pump assembly for bacterial metal efflux.
    Santiago AG; Chen TY; Genova LA; Jung W; George Thompson AM; McEvoy MM; Chen P
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6694-6699. PubMed ID: 28607072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex.
    Osman D; Waldron KJ; Denton H; Taylor CM; Grant AJ; Mastroeni P; Robinson NJ; Cavet JS
    J Biol Chem; 2010 Aug; 285(33):25259-68. PubMed ID: 20534583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes.
    Toft C; Fares MA
    Mol Biol Evol; 2008 Sep; 25(9):2069-76. PubMed ID: 18635679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa.
    Raimunda D; Padilla-Benavides T; Vogt S; Boutigny S; Tomkinson KN; Finney LA; Argüello JM
    Metallomics; 2013 Feb; 5(2):144-51. PubMed ID: 23354150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case.
    Comas I; Moya A; González-Candelas F
    Syst Biol; 2007 Feb; 56(1):1-16. PubMed ID: 17366133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.
    Jen FE; Djoko KY; Bent SJ; Day CJ; McEwan AG; Jennings MP
    FASEB J; 2015 Sep; 29(9):3828-38. PubMed ID: 26031293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis.
    Kim EH; Nies DH; McEvoy MM; Rensing C
    J Bacteriol; 2011 May; 193(10):2381-7. PubMed ID: 21398536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A phylogenomic study of endosymbiotic bacteria.
    Canbäck B; Tamas I; Andersson SG
    Mol Biol Evol; 2004 Jun; 21(6):1110-22. PubMed ID: 15014155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins.
    Bina XR; Howard MF; Taylor-Mulneix DL; Ante VM; Kunkle DE; Bina JE
    PLoS Pathog; 2018 Jan; 14(1):e1006804. PubMed ID: 29304169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.