These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 23122286)

  • 1. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal.
    Zhang J; Nuebel E; Daley GQ; Koehler CM; Teitell MA
    Cell Stem Cell; 2012 Nov; 11(5):589-95. PubMed ID: 23122286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
    Nishimura K; Fukuda A; Hisatake K
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pluripotent stem cell energy metabolism: an update.
    Teslaa T; Teitell MA
    EMBO J; 2015 Jan; 34(2):138-53. PubMed ID: 25476451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of energy metabolism in human pluripotent stem cells.
    Liu W; Chen G
    Cell Mol Life Sci; 2021 Dec; 78(24):8097-8108. PubMed ID: 34773132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility?
    Ivanova JS; Lyublinskaya OG
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Reprogramming of Stem Cell Epigenetics.
    Ryall JG; Cliff T; Dalton S; Sartorelli V
    Cell Stem Cell; 2015 Dec; 17(6):651-662. PubMed ID: 26637942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation.
    Giallongo S; Rehakova D; Raffaele M; Lo Re O; Koutna I; Vinciguerra M
    Antioxid Redox Signal; 2021 Feb; 34(4):335-349. PubMed ID: 32567336
    [No Abstract]   [Full Text] [Related]  

  • 8. Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks.
    Boward B; Wu T; Dalton S
    Stem Cells; 2016 Jun; 34(6):1427-36. PubMed ID: 26889666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Metabolism Regulates Stem Cell Pluripotency.
    Tsogtbaatar E; Landin C; Minter-Dykhouse K; Folmes CDL
    Front Cell Dev Biol; 2020; 8():87. PubMed ID: 32181250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism in pluripotency: Both driver and passenger?
    Dahan P; Lu V; Nguyen RMT; Kennedy SAL; Teitell MA
    J Biol Chem; 2019 Apr; 294(14):5420-5429. PubMed ID: 29463682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria and pluripotent stem cells function.
    Jia ZW
    Yi Chuan; 2016 Jul; 38(7):603-611. PubMed ID: 27733333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition.
    Son MJ; Jeong BR; Kwon Y; Cho YS
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2512-8. PubMed ID: 23939289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells.
    Mishra S; Kacin E; Stamatiadis P; Franck S; Van der Jeught M; Mertes H; Pennings G; De Sutter P; Sermon K; Heindryckx B; Geens M
    Mol Hum Reprod; 2018 Apr; 24(4):173-184. PubMed ID: 29471503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
    Folmes CD; Nelson TJ; Martinez-Fernandez A; Arrell DK; Lindor JZ; Dzeja PP; Ikeda Y; Perez-Terzic C; Terzic A
    Cell Metab; 2011 Aug; 14(2):264-71. PubMed ID: 21803296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial regulation in human pluripotent stem cells during reprogramming and β cell differentiation.
    Jasra IT; Cuesta-Gomez N; Verhoeff K; Marfil-Garza BA; Dadheech N; Shapiro AMJ
    Front Endocrinol (Lausanne); 2023; 14():1236472. PubMed ID: 37929027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functions of microRNAs in pluripotency and reprogramming.
    Leonardo TR; Schultheisz HL; Loring JF; Laurent LC
    Nat Cell Biol; 2012 Nov; 14(11):1114-21. PubMed ID: 23131918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Regulation of Mammalian Stem Cell Differentiation.
    Tyurin-Kuzmin PA; Molchanov AY; Chechekhin VI; Ivanova AM; Kulebyakin KY
    Biochemistry (Mosc); 2020 Mar; 85(3):264-278. PubMed ID: 32564731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells.
    Hayashi Y; Otsuka K; Ebina M; Igarashi K; Takehara A; Matsumoto M; Kanai A; Igarashi K; Soga T; Matsui Y
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8289-8294. PubMed ID: 28716939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of SIRT2 and altered acetylation status of human pluripotent stem cells: possible link to metabolic switch during reprogramming.
    Kwon OS; Han MJ; Cha HJ
    BMB Rep; 2017 Sep; 50(9):435-436. PubMed ID: 28683850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DSG2 Is a Functional Cell Surface Marker for Identification and Isolation of Human Pluripotent Stem Cells.
    Park J; Son Y; Lee NG; Lee K; Lee DG; Song J; Lee J; Kim S; Cho MJ; Jang JH; Lee J; Park JG; Kim YG; Kim JS; Lee J; Cho YS; Park YJ; Han BS; Bae KH; Han S; Kang B; Haam S; Lee SH; Lee SC; Min JK
    Stem Cell Reports; 2018 Jul; 11(1):115-127. PubMed ID: 29910125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.