These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 23122330)
1. Modulation of endogenous pathways enhances bioethanol yield and productivity in Escherichia coli. Munjal N; Mattam AJ; Pramanik D; Srivastava PS; Yazdani SS Microb Cell Fact; 2012 Nov; 11():145. PubMed ID: 23122330 [TBL] [Abstract][Full Text] [Related]
2. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875 [TBL] [Abstract][Full Text] [Related]
3. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. Hasona A; Kim Y; Healy FG; Ingram LO; Shanmugam KT J Bacteriol; 2004 Nov; 186(22):7593-600. PubMed ID: 15516572 [TBL] [Abstract][Full Text] [Related]
4. Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose. Chen K; Iverson AG; Garza EA; Grayburn WS; Zhou S Biotechnol Lett; 2010 Jan; 32(1):87-96. PubMed ID: 19728107 [TBL] [Abstract][Full Text] [Related]
5. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture. Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338 [TBL] [Abstract][Full Text] [Related]
6. Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10. Manow R; Wang J; Wang Y; Zhao J; Garza E; Iverson A; Finan C; Grayburn S; Zhou S J Ind Microbiol Biotechnol; 2012 Jul; 39(7):977-85. PubMed ID: 22374228 [TBL] [Abstract][Full Text] [Related]
7. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Zhou S; Iverson AG; Grayburn WS Biotechnol Lett; 2008 Feb; 30(2):335-42. PubMed ID: 17957344 [TBL] [Abstract][Full Text] [Related]
8. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain. Martínez-Alcantar L; Díaz-Pérez AL; Campos-García J World J Microbiol Biotechnol; 2019 Nov; 35(12):189. PubMed ID: 31748890 [TBL] [Abstract][Full Text] [Related]
9. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 1991; 28-29():221-36. PubMed ID: 1929364 [TBL] [Abstract][Full Text] [Related]
10. A novel strategy for production of ethanol and recovery of xylose from simulated corncob hydrolysate. Sun J; Wang J; Tian K; Dong Z; Liu X; Permaul K; Singh S; Prior BA; Wang Z Biotechnol Lett; 2018 May; 40(5):781-788. PubMed ID: 29564679 [TBL] [Abstract][Full Text] [Related]
11. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Kim Y; Ingram LO; Shanmugam KT Appl Environ Microbiol; 2007 Mar; 73(6):1766-71. PubMed ID: 17259366 [TBL] [Abstract][Full Text] [Related]
12. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Zhou L; Zuo ZR; Chen XZ; Niu DD; Tian KM; Prior BA; Shen W; Shi GY; Singh S; Wang ZX Curr Microbiol; 2011 Mar; 62(3):981-9. PubMed ID: 21086129 [TBL] [Abstract][Full Text] [Related]
14. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions. Fernández-Sandoval MT; Galíndez-Mayer J; Bolívar F; Gosset G; Ramírez OT; Martinez A Microb Cell Fact; 2019 Aug; 18(1):145. PubMed ID: 31443652 [TBL] [Abstract][Full Text] [Related]
15. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696 [TBL] [Abstract][Full Text] [Related]
16. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Zhang X; Shanmugam KT; Ingram LO Appl Environ Microbiol; 2010 Apr; 76(8):2397-401. PubMed ID: 20154114 [TBL] [Abstract][Full Text] [Related]
17. Improvement in ethanol productivity of engineered E. coli strain SSY13 in defined medium via adaptive evolution. Jilani SB; Venigalla SSK; Mattam AJ; Dev C; Yazdani SS J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1375-1384. PubMed ID: 28676891 [TBL] [Abstract][Full Text] [Related]
18. Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05. Iverson A; Garza E; Zhao J; Wang Y; Zhao X; Wang J; Manow R; Zhou S World J Microbiol Biotechnol; 2013 Jul; 29(7):1225-32. PubMed ID: 23435875 [TBL] [Abstract][Full Text] [Related]
19. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture. Chiang CJ; Lee HM; Guo HJ; Wang ZW; Lin LJ; Chao YP J Agric Food Chem; 2013 Aug; 61(31):7583-90. PubMed ID: 23848609 [TBL] [Abstract][Full Text] [Related]
20. Co-expression of phosphoenolpyruvate carboxykinase and nicotinic acid phosphoribosyltransferase for succinate production in engineered Escherichia coli. Jiang M; Chen X; Liang L; Liu R; Wan Q; Wu M; Zhang H; Ma J; Chen K; Ouyang P Enzyme Microb Technol; 2014 Mar; 56():8-14. PubMed ID: 24564896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]