BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23122771)

  • 21. Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments.
    Gehrke GE; Blum JD; Slotton DG; Greenfield BK
    Environ Sci Technol; 2011 Feb; 45(4):1264-70. PubMed ID: 21250676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sources and transfers of methylmercury in adjacent river and forest food webs.
    Tsui MT; Blum JD; Kwon SY; Finlay JC; Balogh SJ; Nollet YH
    Environ Sci Technol; 2012 Oct; 46(20):10957-64. PubMed ID: 23033864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for sites of methylmercury formation in a flowing water system: impact of anthropogenic barriers and water management.
    Pizarro-Barraza C; Gustin MS; Peacock M; Miller M
    Sci Total Environ; 2014 Apr; 478():58-69. PubMed ID: 24530585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal and spatial distributions of sediment mercury at salt pond wetland restoration sites, San Francisco Bay, CA, USA.
    Miles AK; Ricca MA
    Sci Total Environ; 2010 Feb; 408(5):1154-65. PubMed ID: 19922978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation.
    Ward DM; Nislow KH; Folt CL
    Ann N Y Acad Sci; 2010 May; 1195():62-83. PubMed ID: 20536817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns in forage fish mercury concentrations across Northeast US estuaries.
    Buckman KL; Mason RP; Seelen E; Taylor VF; Balcom PH; Chipman J; Chen CY
    Environ Res; 2021 Mar; 194():110629. PubMed ID: 33358725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling.
    Meng M; Sun RY; Liu HW; Yu B; Yin YG; Hu LG; Chen JB; Shi JB; Jiang GB
    J Hazard Mater; 2020 Feb; 384():121379. PubMed ID: 31611019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mercury bioaccumulation in estuarine wetland fishes: evaluating habitats and risk to coastal wildlife.
    Eagles-Smith CA; Ackerman JT
    Environ Pollut; 2014 Oct; 193():147-155. PubMed ID: 25019587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study.
    Windham-Myers L; Fleck JA; Ackerman JT; Marvin-DiPasquale M; Stricker CA; Heim WA; Bachand PA; Eagles-Smith CA; Gill G; Stephenson M; Alpers CN
    Sci Total Environ; 2014 Jun; 484():221-31. PubMed ID: 24530187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000.
    Sunderland EM; Dalziel J; Heyes A; Branfireun BA; Krabbenhoft DP; Gobas FA
    Environ Sci Technol; 2010 Mar; 44(5):1698-704. PubMed ID: 20121085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomagnification of mercury through the benthic food webs of a temperate estuary: Masan Bay, Korea.
    Kim E; Kim H; Shin KH; Kim MS; Kundu SR; Lee BG; Han S
    Environ Toxicol Chem; 2012 Jun; 31(6):1254-63. PubMed ID: 22447737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictors of mercury spatial patterns in San Francisco Bay forage fish.
    Greenfield BK; Slotton DG; Harrold KH
    Environ Toxicol Chem; 2013 Dec; 32(12):2728-37. PubMed ID: 23893557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylmercury cycling in the Bohai Sea and Yellow Sea: Reasons for the low system efficiency of methylmercury production.
    Chen L; Cheng G; Zhou Z; Liang Y; Ci Z; Yin Y; Liu G; Cai Y; Li Y
    Water Res; 2024 Jul; 258():121792. PubMed ID: 38772318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia).
    Perrot V; Pastukhov MV; Epov VN; Husted S; Donard OF; Amouroux D
    Environ Sci Technol; 2012 Jun; 46(11):5902-11. PubMed ID: 22545798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decline in methylmercury in museum-preserved bivalves from San Francisco Bay, California.
    Luengen AC; Foslund HM; Greenfield BK
    Sci Total Environ; 2016 Dec; 572():782-793. PubMed ID: 27622695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review.
    Mailman M; Stepnuk L; Cicek N; Bodaly RA
    Sci Total Environ; 2006 Sep; 368(1):224-35. PubMed ID: 16343602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation.
    Chasar LC; Scudder BC; Stewart AR; Bell AH; Aiken GR
    Environ Sci Technol; 2009 Apr; 43(8):2733-9. PubMed ID: 19475942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis.
    Wu P; Kainz MJ; Bravo AG; Ã…kerblom S; Sonesten L; Bishop K
    Sci Total Environ; 2019 Jan; 646():357-367. PubMed ID: 30055496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low mercury levels in marine fish from estuarine and coastal environments in southern China.
    Pan K; Chan H; Tam YK; Wang WX
    Environ Pollut; 2014 Feb; 185():250-7. PubMed ID: 24292441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.