BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

770 related articles for article (PubMed ID: 23123177)

  • 1. Oxidative stress and cancer: an overview.
    Sosa V; Moliné T; Somoza R; Paciucci R; Kondoh H; LLeonart ME
    Ageing Res Rev; 2013 Jan; 12(1):376-90. PubMed ID: 23123177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of oxidative stress and cell membrane lipid peroxidation in human cancer (Spain).
    Cejas P; Casado E; Belda-Iniesta C; De Castro J; Espinosa E; Redondo A; Sereno M; García-Cabezas MA; Vara JA; Domínguez-Cáceres A; Perona R; González-Barón M
    Cancer Causes Control; 2004 Sep; 15(7):707-19. PubMed ID: 15280629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metastasis: cancer cell's escape from oxidative stress.
    Pani G; Galeotti T; Chiarugi P
    Cancer Metastasis Rev; 2010 Jun; 29(2):351-78. PubMed ID: 20386957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous and induced oxidative stress in multi-cellular tumour spheroids: implications for improving tumour therapy.
    Khaitan D; Dwarakanath BS
    Indian J Biochem Biophys; 2009 Feb; 46(1):16-24. PubMed ID: 19374249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress, redox, and the tumor microenvironment.
    Cook JA; Gius D; Wink DA; Krishna MC; Russo A; Mitchell JB
    Semin Radiat Oncol; 2004 Jul; 14(3):259-66. PubMed ID: 15254869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis.
    Zhou S; Liu R; Yuan K; Yi T; Zhao X; Huang C; Wei Y
    Mass Spectrom Rev; 2013; 32(4):267-311. PubMed ID: 23165949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell?
    Ghanbari Movahed Z; Rastegari-Pouyani M; Mohammadi MH; Mansouri K
    Biomed Pharmacother; 2019 Apr; 112():108690. PubMed ID: 30798124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+-ATP synthase.
    Santamaría G; Martínez-Diez M; Fabregat I; Cuezva JM
    Carcinogenesis; 2006 May; 27(5):925-35. PubMed ID: 16361271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species in melanoma and its therapeutic implications.
    Wittgen HG; van Kempen LC
    Melanoma Res; 2007 Dec; 17(6):400-9. PubMed ID: 17992124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy.
    Gibson SB
    Autophagy; 2010 Oct; 6(7):835-7. PubMed ID: 20818163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.
    Levine AJ; Puzio-Kuter AM
    Science; 2010 Dec; 330(6009):1340-4. PubMed ID: 21127244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of energy metabolism in breast cancer brain metastases.
    Chen EI; Hewel J; Krueger JS; Tiraby C; Weber MR; Kralli A; Becker K; Yates JR; Felding-Habermann B
    Cancer Res; 2007 Feb; 67(4):1472-86. PubMed ID: 17308085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why mitochondria are excellent targets for cancer therapy.
    Tatarkova Z; Kuka S; Petráš M; Račay P; Lehotský J; Dobrota D; Kaplan P
    Klin Onkol; 2012; 25(6):421-6. PubMed ID: 23301643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROS stress in cancer cells and therapeutic implications.
    Pelicano H; Carney D; Huang P
    Drug Resist Updat; 2004 Apr; 7(2):97-110. PubMed ID: 15158766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic.
    Lau AT; Wang Y; Chiu JF
    J Cell Biochem; 2008 May; 104(2):657-67. PubMed ID: 18172854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.