These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23123189)

  • 1. The yin of exofacial protein sulfhydryls and the yang of intracellular glutathione in in vitro transfection with SS14 bioreducible lipoplexes.
    Pezzoli D; Zanda M; Chiesa R; Candiani G
    J Control Release; 2013 Jan; 165(1):44-53. PubMed ID: 23123189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreducible liposomes for gene delivery: from the formulation to the mechanism of action.
    Candiani G; Pezzoli D; Ciani L; Chiesa R; Ristori S
    PLoS One; 2010 Oct; 5(10):e13430. PubMed ID: 20976172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved in vitro gene transfer mediated by fluorinated lipoplexes in the presence of a bile salt surfactant.
    Gaucheron J; Santaella C; Vierling P
    J Gene Med; 2001; 3(4):338-44. PubMed ID: 11529663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfection with fluorinated lipoplexes based on new fluorinated cationic lipids and in the presence of a bile salt surfactant.
    Boulanger C; Di Giorgio C; Gaucheron J; Vierling P
    Bioconjug Chem; 2004; 15(4):901-8. PubMed ID: 15264880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of magnetic lipoplexes studied by single particle tracking in living cells.
    Sauer AM; de Bruin KG; Ruthardt N; Mykhaylyk O; Plank C; Bräuchle C
    J Control Release; 2009 Jul; 137(2):136-45. PubMed ID: 19358868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dimerizable cationic lipid with potential for gene delivery.
    Candiani G; Pezzoli D; Cabras M; Ristori S; Pellegrini C; Kajaste-Rudnitski A; Vicenzi E; Sala C; Zanda M
    J Gene Med; 2008 Jun; 10(6):637-45. PubMed ID: 18338839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Evaluation of RGD-Modified Gemini Surfactant-Based Lipoplexes for Targeted Gene Therapy in Melanoma Model.
    Mohammed-Saeid W; Chitanda J; Al-Dulaymi M; Verrall R; Badea I
    Pharm Res; 2017 Sep; 34(9):1886-1896. PubMed ID: 28643235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA induced dimerization of a sulfhydryl surfactant in transfection agents studied by ESR spectroscopy.
    Ciani L; Candiani G; Frati A; Ristori S
    Biophys Chem; 2010 Sep; 151(1-2):81-5. PubMed ID: 20554371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo.
    Duarte S; Faneca H; Lima MC
    Int J Pharm; 2012 Feb; 423(2):365-77. PubMed ID: 22209825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-covalent association of folate to lipoplexes: a promising strategy to improve gene delivery in the presence of serum.
    Duarte S; Faneca H; de Lima MC
    J Control Release; 2011 Feb; 149(3):264-72. PubMed ID: 21044650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cell membrane thiols and reduction-triggered disassembly on transfection activity of bioreducible polyplexes.
    Li J; Manickam DS; Chen J; Oupicky D
    Eur J Pharm Sci; 2012 Jun; 46(3):173-80. PubMed ID: 22406090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes.
    Wasungu L; Stuart MC; Scarzello M; Engberts JB; Hoekstra D
    Biochim Biophys Acta; 2006 Oct; 1758(10):1677-84. PubMed ID: 16930530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced hepatocyte-selective in vivo gene expression by stabilized galactosylated liposome/plasmid DNA complex using sodium chloride for complex formation.
    Fumoto S; Kawakami S; Ito Y; Shigeta K; Yamashita F; Hashida M
    Mol Ther; 2004 Oct; 10(4):719-29. PubMed ID: 15451456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dioleoyl phosphatidylethanolamine and PEG-lipid conjugates modify DNA delivery mediated by 1,4-dihydropyridine amphiphiles.
    Hyvönen Z; Rönkkö S; Toppinen MR; Jääskeläinen I; Plotniece A; Urtti A
    J Control Release; 2004 Sep; 99(1):177-90. PubMed ID: 15342190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical activation of lipoplexes formed from DNA and a redox-active, ferrocene-containing cationic lipid.
    Jewell CM; Hays ME; Kondo Y; Abbott NL; Lynn DM
    Bioconjug Chem; 2008 Nov; 19(11):2120-8. PubMed ID: 18831573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipoic acid-derived amphiphiles for redox-controlled DNA delivery.
    Balakirev M; Schoehn G; Chroboczek J
    Chem Biol; 2000 Oct; 7(10):813-9. PubMed ID: 11033084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing influence of intracellular and membrane thiols on the toxicity of reducible polycations.
    Wu C; Li J; Zhu Y; Chen J; Oupický D
    Biomaterials; 2013 Nov; 34(34):8843-50. PubMed ID: 23948163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth-associated modifications of low-molecular-weight thiols and protein sulfhydryls in human bronchial fibroblasts.
    Atzori L; Dypbukt JM; Sundqvist K; Cotgreave I; Edman CC; Moldéus P; Grafström RC
    J Cell Physiol; 1990 Apr; 143(1):165-71. PubMed ID: 2318904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the spacer of cationic gemini amphiphiles on the hydration of lipoplexes.
    Luciani P; Bombelli C; Colone M; Giansanti L; Ryhänen SJ; Säily VM; Mancini G; Kinnunen PK
    Biomacromolecules; 2007 Jun; 8(6):1999-2003. PubMed ID: 17518442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione.
    Kommareddy S; Amiji M
    Bioconjug Chem; 2005; 16(6):1423-32. PubMed ID: 16287238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.