These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2312345)

  • 1. Cytochemical evidence of NADH-oxidase activity in the isolated working rabbit heart subjected to normothermic global ischaemia.
    Vandeplassche G; Thoné F; Borgers M
    Histochem J; 1990 Jan; 22(1):11-7. PubMed ID: 2312345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial hydrogen peroxide generation by NADH-oxidase activity following regional myocardial ischemia in the dog.
    Vandeplassche G; Hermans C; Thoné F; Borgers M
    J Mol Cell Cardiol; 1989 Apr; 21(4):383-92. PubMed ID: 2746659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stunned myocardium has increased mitochondrial NADH oxidase and ATPase activities.
    Vandeplassche G; Hermans C; Thoné F; Borgers M
    Cardioscience; 1991 Mar; 2(1):47-53. PubMed ID: 1832316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochemical localization of NADH oxidase in Candida albicans.
    Borgers M; De Nollin S; Thoné F; Van Belle H
    J Histochem Cytochem; 1977 Mar; 25(3):193-9. PubMed ID: 320256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage.
    Veitch K; Hombroeckx A; Caucheteux D; Pouleur H; Hue L
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):709-15. PubMed ID: 1346958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method.
    Briggs RT; Drath DB; Karnovsky ML; Karnovsky MJ
    J Cell Biol; 1975 Dec; 67(3):566-86. PubMed ID: 407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Existence and participation of xanthine oxidase in reperfusion injury of ischemic rabbit myocardium.
    Terada LS; Rubinstein JD; Lesnefsky EJ; Horwitz LD; Leff JA; Repine JE
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H805-10. PubMed ID: 2000975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ischaemia and reperfusion on NADH coenzyme Q reductase activity in rat liver.
    Frederiks WM; Bosch KS; Vreeling-Sindelárová H
    Histochem J; 1999 Sep; 31(9):609-15. PubMed ID: 10579630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart.
    Downey JM; Miura T; Eddy LJ; Chambers DE; Mellert T; Hearse DJ; Yellon DM
    J Mol Cell Cardiol; 1987 Nov; 19(11):1053-60. PubMed ID: 3481402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between enzyme histochemical reactions and respective enzyme activities in global ischaemic rat hearts.
    Hiltunen JK; Saukko P; Hirvonen J
    Br J Exp Pathol; 1985 Dec; 66(6):743-52. PubMed ID: 3002415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet induced aggravation of acute ischaemia in an isolated rabbit heart model.
    Rösen R; Dausch W; Beck E; Klaus W
    Cardiovasc Res; 1987 Apr; 21(4):293-8. PubMed ID: 3652096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of myocardial protective action of dilazep during ischaemia and reperfusion.
    Cargnoni A; Condorelli E; Ceconi C; Curello S; Albertini A; Ferrari R
    Pharmacol Res Commun; 1987 May; 19(5):341-57. PubMed ID: 3628458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of normothermic ischemic cardiac arrest and of reperfusion on the free oxygen radical scavenger enzymes and xanthine oxidase (a generator of superoxide anions).
    van Jaarsveld H; Groenewald AJ; Potgieter GM; Barnard SP; Vermaak WJ; Barnard HC
    Enzyme; 1988; 39(1):8-16. PubMed ID: 2831043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat.
    Ellis EA; Grant MB; Murray FT; Wachowski MB; Guberski DL; Kubilis PS; Lutty GA
    Free Radic Biol Med; 1998 Jan; 24(1):111-20. PubMed ID: 9436620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases.
    Briggs RT; Karnovsky ML; Karnovsky MJ
    J Clin Invest; 1977 Jun; 59(6):1088-98. PubMed ID: 193872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase.
    Mohazzab-H KM; Kaminski PM; Wolin MS
    Circulation; 1997 Jul; 96(2):614-20. PubMed ID: 9244234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-mediated myocardial damage during ischaemia and reperfusion: role of the cellular defences against oxygen toxicity.
    Ferrari R; Ceconi C; Curello S; Guarnieri C; Caldarera CM; Albertini A; Visioli O
    J Mol Cell Cardiol; 1985 Oct; 17(10):937-45. PubMed ID: 4068039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The NADH oxidase system (external) of muscle mitochondria and its role in the oxidation of cytoplasmic NADH.
    Rasmussen UF; Rasmussen HN
    Biochem J; 1985 Aug; 229(3):631-41. PubMed ID: 4052015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial damage during ischaemia and reperfusion.
    Ferrari R; Ceconi C; Curello S; Alfieri O; Visioli O
    Eur Heart J; 1993 Nov; 14 Suppl G():25-30. PubMed ID: 8287865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroncytochemical studies on changes of the adenylcyclase activity following experimental hypoxia and ischaemia in perfused rat hearts.
    Balogh I; Rubányi G; Schulze W; Kovách AG; Sótonyi P; Somogyi E
    Exp Pathol; 1981; 20(2):121-7. PubMed ID: 6276217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.