These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 23123454)
1. EcmPred: prediction of extracellular matrix proteins based on random forest with maximum relevance minimum redundancy feature selection. Kandaswamy KK; Pugalenthi G; Kalies KU; Hartmann E; Martinetz T J Theor Biol; 2013 Jan; 317():377-83. PubMed ID: 23123454 [TBL] [Abstract][Full Text] [Related]
2. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes. Kandaswamy KK; Pugalenthi G; Hartmann E; Kalies KU; Möller S; Suganthan PN; Martinetz T Biochem Biophys Res Commun; 2010 Jan; 391(3):1306-11. PubMed ID: 19995554 [TBL] [Abstract][Full Text] [Related]
3. An ensemble method with hybrid features to identify extracellular matrix proteins. Yang R; Zhang C; Gao R; Zhang L PLoS One; 2015; 10(2):e0117804. PubMed ID: 25680094 [TBL] [Abstract][Full Text] [Related]
4. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
5. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature. Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114 [TBL] [Abstract][Full Text] [Related]
6. Unraveling the human bone microenvironment beyond the classical extracellular matrix proteins: a human bone protein library. Alves RD; Demmers JA; Bezstarosti K; van der Eerden BC; Verhaar JA; Eijken M; van Leeuwen JP J Proteome Res; 2011 Oct; 10(10):4725-33. PubMed ID: 21892838 [TBL] [Abstract][Full Text] [Related]
7. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
8. DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest. Kumar KK; Pugalenthi G; Suganthan PN J Biomol Struct Dyn; 2009 Jun; 26(6):679-86. PubMed ID: 19385697 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. Bagos PG; Liakopoulos TD; Hamodrakas SJ BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112 [TBL] [Abstract][Full Text] [Related]
10. A high-accuracy protein structural class prediction algorithm using predicted secondary structural information. Liu T; Jia C J Theor Biol; 2010 Dec; 267(3):272-5. PubMed ID: 20831876 [TBL] [Abstract][Full Text] [Related]
11. Recognition of beta-hairpin motifs in proteins by using the composite vector. Hu XZ; Li QZ; Wang CL Amino Acids; 2010 Mar; 38(3):915-21. PubMed ID: 19418016 [TBL] [Abstract][Full Text] [Related]
12. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. Kumar M; Gromiha MM; Raghava GP J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174 [TBL] [Abstract][Full Text] [Related]
13. Mem-PHybrid: hybrid features-based prediction system for classifying membrane protein types. Hayat M; Khan A Anal Biochem; 2012 May; 424(1):35-44. PubMed ID: 22342883 [TBL] [Abstract][Full Text] [Related]
14. Prediction of extracellular matrix proteins based on distinctive sequence and domain characteristics. Jung J; Ryu T; Hwang Y; Lee E; Lee D J Comput Biol; 2010 Jan; 17(1):97-105. PubMed ID: 20078400 [TBL] [Abstract][Full Text] [Related]
15. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bandyopadhyay S; Mitra R Bioinformatics; 2009 Oct; 25(20):2625-31. PubMed ID: 19692556 [TBL] [Abstract][Full Text] [Related]
16. Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection. Ma X; Guo J; Sun X Biomed Res Int; 2015; 2015():425810. PubMed ID: 26543860 [TBL] [Abstract][Full Text] [Related]
17. A bioinformatics analysis of alternative exon usage in human genes coding for extracellular matrix proteins. Sakabe NJ; Vibranovski MD; de Souza SJ Genet Mol Res; 2004 Dec; 3(4):532-44. PubMed ID: 15688319 [TBL] [Abstract][Full Text] [Related]
18. The extracellular matrix: Tools and insights for the "omics" era. Naba A; Clauser KR; Ding H; Whittaker CA; Carr SA; Hynes RO Matrix Biol; 2016 Jan; 49():10-24. PubMed ID: 26163349 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. Xiao Z; Camalier CE; Nagashima K; Chan KC; Lucas DA; de la Cruz MJ; Gignac M; Lockett S; Issaq HJ; Veenstra TD; Conrads TP; Beck GR J Cell Physiol; 2007 Feb; 210(2):325-35. PubMed ID: 17096383 [TBL] [Abstract][Full Text] [Related]
20. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Ozçift A Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]