BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 23123601)

  • 1. Measurements of system sharpness for two digital breast tomosynthesis systems.
    Marshall NW; Bosmans H
    Phys Med Biol; 2012 Nov; 57(22):7629-50. PubMed ID: 23123601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full 3-D modulation transfer function estimation of tomosynthesis system using modified Richardson-Lucy deconvolution.
    Song H; Lee C; Baek J
    Med Phys; 2024 Apr; 51(4):2510-2525. PubMed ID: 38011539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation transfer function of digital breast tomosynthesis: a comparison of various edge devices.
    Shirato T; Doryo K; Yamada S; Ozaki Y
    Radiol Phys Technol; 2024 May; ():. PubMed ID: 38780698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms.
    Park S; Jennings R; Liu H; Badano A; Myers K
    Med Phys; 2010 Dec; 37(12):6253-70. PubMed ID: 21302782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposing a New Velocity Profile for Continuous X-Ray Tube Motion in Digital Breast Tomosynthesis.
    Acciavatti RJ; Bakic PR; Maidment ADA
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8668():. PubMed ID: 38800605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the MTF in 3D for a Quantized SPECT Camera Having Arbitrary Trajectories.
    Madhav P; Bowsher JE; Cutler SJ; Tornai MP
    IEEE Trans Nucl Sci; 2009 Jun; 56(3):661-670. PubMed ID: 21331301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of beam quality and readout direction in the edge profile on the modulation transfer function of photostimulable phosphor systems via the edge method.
    Takarabe S; Kuramoto T; Shibayama Y; Tsuru H; Tatsumi M; Kato T; Okamura K; Yoshiura K
    J Med Imaging (Bellingham); 2021 Jul; 8(4):043501. PubMed ID: 34307736
    [No Abstract]   [Full Text] [Related]  

  • 8. Investigation of Deconvolution Method with Adaptive Point Spread Function Based on Scintillator Thickness in Wavelet Domain.
    Kim K; Cha BK; Jeong HW; Lee Y
    Bioengineering (Basel); 2024 Mar; 11(4):. PubMed ID: 38671752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensions, two microscopes, one code: Automatic differentiation for x-ray nanotomography beyond the depth of focus limit.
    Du M; Nashed YSG; Kandel S; Gürsoy D; Jacobsen C
    Sci Adv; 2020 Mar; 6(13):eaay3700. PubMed ID: 32258397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emerging role of breast tomosynthesis.
    Uematsu T
    Breast Cancer; 2013 Jul; 20(3):204-12. PubMed ID: 23456738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of multi-directional MTF for breast tomosynthesis.
    Samei E; Murphy S; Richard S
    Phys Med Biol; 2013 Mar; 58(5):1649-61. PubMed ID: 23422248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray source motion blur modeling and deblurring with generative diffusion for digital breast tomosynthesis.
    Gao M; Fessler JA; Chan HP
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38640913
    [No Abstract]   [Full Text] [Related]  

  • 13. Optimized signal of calcifications in wide-angle digital breast tomosynthesis: a virtual imaging trial.
    Vancoillie L; Cockmartin L; Lueck F; Marshall N; Keupers M; Nanke R; Kappler S; Van Ongeval C; Bosmans H
    Eur Radiol; 2024 Mar; ():. PubMed ID: 38546790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing microcalcifications in lumpectomy specimens: an exploration into the clinical potential of carbon nanotube-enabled
    Puett C; Gao J; Tucker A; Inscoe CR; Hwang M; Kuzmiak CM; Lu J; Zhou O; Lee YZ
    Biomed Phys Eng Express; 2019 Jul; 5(4):. PubMed ID: 33304617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical evaluation of image quality in synthetic mammograms obtained from 15° and 40° digital breast tomosynthesis in a commercial system: a quantitative comparison.
    Barca P; Lamastra R; Tucciariello RM; Traino A; Marini C; Aringhieri G; Caramella D; Fantacci ME
    Phys Eng Sci Med; 2021 Mar; 44(1):23-35. PubMed ID: 33226534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verification of the accuracy of a hybrid breast imaging simulation framework for virtual clinical trial applications.
    Vancoillie L; Marshall N; Cockmartin L; Vignero J; Zhang G; Bosmans H
    J Med Imaging (Bellingham); 2020 Jul; 7(4):042804. PubMed ID: 32341939
    [No Abstract]   [Full Text] [Related]  

  • 17. Human observer performance on in-plane digital breast tomosynthesis images: Effects of reconstruction filters and data acquisition angles on signal detection.
    Lee C; Han M; Baek J
    PLoS One; 2020; 15(3):e0229915. PubMed ID: 32163472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers.
    Rodriguez-Ruiz A; Teuwen J; Vreemann S; Bouwman RW; van Engen RE; Karssemeijer N; Mann RM; Gubern-Merida A; Sechopoulos I
    Acta Radiol; 2018 Sep; 59(9):1051-1059. PubMed ID: 29254355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional segmentation of breast masses from digital breast tomosynthesis images.
    Pöhlmann STL; Lim YY; Harkness E; Pritchard S; Taylor CJ; Astley SM
    J Med Imaging (Bellingham); 2017 Jul; 4(3):034007. PubMed ID: 28948195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards standardization of x-ray beam filters in digital mammography and digital breast tomosynthesis: Monte Carlo simulations and analytical modelling.
    Shrestha S; Vedantham S; Karellas A
    Phys Med Biol; 2017 Mar; 62(5):1969-1993. PubMed ID: 28075335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.