These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23124919)

  • 1. Dynamic primitives of motor behavior.
    Hogan N; Sternad D
    Biol Cybern; 2012 Dec; 106(11-12):727-39. PubMed ID: 23124919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic primitives in the control of locomotion.
    Hogan N; Sternad D
    Front Comput Neurosci; 2013; 7():71. PubMed ID: 23801959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic primitives in constrained action: systematic changes in the zero-force trajectory.
    Hermus J; Doeringer J; Sternad D; Hogan N
    J Neurophysiol; 2024 Jan; 131(1):1-15. PubMed ID: 37820017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moving slowly is hard for humans: limitations of dynamic primitives.
    Park SW; Marino H; Charles SK; Sternad D; Hogan N
    J Neurophysiol; 2017 Jul; 118(1):69-83. PubMed ID: 28356477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomarkers for rhythmic and discrete dynamic primitives in locomotion.
    Moura Coelho R; Hirai H; Martins J; Krebs HI
    Sci Rep; 2022 Nov; 12(1):20165. PubMed ID: 36424422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor primitives--new data and future questions.
    Giszter SF
    Curr Opin Neurobiol; 2015 Aug; 33():156-65. PubMed ID: 25912883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic properties of on-line error corrections in the monkey.
    Fishbach A; Roy SA; Bastianen C; Miller LE; Houk JC
    Exp Brain Res; 2005 Aug; 164(4):442-57. PubMed ID: 15940500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An error-tuned model for sensorimotor learning.
    Ingram JN; Sadeghi M; Flanagan JR; Wolpert DM
    PLoS Comput Biol; 2017 Dec; 13(12):e1005883. PubMed ID: 29253869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling discrete and rhythmic movements through motor primitives: a review.
    Degallier S; Ijspeert A
    Biol Cybern; 2010 Oct; 103(4):319-38. PubMed ID: 20697734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective.
    Giszter S; Patil V; Hart C
    Prog Brain Res; 2007; 165():323-46. PubMed ID: 17925255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating variability from motor primitives during infant locomotor development.
    Hinnekens E; Barbu-Roth M; Do MC; Berret B; Teulier C
    Elife; 2023 Jul; 12():. PubMed ID: 37523218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of bi-directional movement primitives and their agonist-antagonist synergy with the delta-lognormal model.
    Woch A; Plamondon R
    Motor Control; 2010 Jan; 14(1):1-25. PubMed ID: 20237400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Upper-Limb Movements Are Generated by Combining Motor Primitives that Scale with the Movement Size.
    Miranda JGV; Daneault JF; Vergara-Diaz G; Torres ÂFSOE; Quixadá AP; Fonseca ML; Vieira JPBC; Dos Santos VS; da Figueiredo TC; Pinto EB; Peña N; Bonato P
    Sci Rep; 2018 Aug; 8(1):12918. PubMed ID: 30150687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the encoding capacity of human motor adaptation.
    Kim S; Kwon J; Kim JM; Park FC; Yeo SH
    J Neurophysiol; 2021 Jul; 126(1):123-139. PubMed ID: 34077281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of overlapping submovements in the control of rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2002 Jun; 144(3):351-64. PubMed ID: 12021817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On rhythmic and discrete movements: reflections, definitions and implications for motor control.
    Hogan N; Sternad D
    Exp Brain Res; 2007 Jul; 181(1):13-30. PubMed ID: 17530234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning of action through adaptive combination of motor primitives.
    Thoroughman KA; Shadmehr R
    Nature; 2000 Oct; 407(6805):742-7. PubMed ID: 11048720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning and control of exploration primitives.
    Gordon G; Fonio E; Ahissar E
    J Comput Neurosci; 2014 Oct; 37(2):259-80. PubMed ID: 24796479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the framework of the kinematic theory for the definition of a movement primitive.
    Woch A; Plamondon R
    Motor Control; 2004 Oct; 8(4):547-57. PubMed ID: 15585907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.