These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23124969)

  • 1. The discontinuous nature of neurofilament transport accommodates both establishment and repair of the axonal neurofilament array.
    Shea TB; Lee S
    Cytoskeleton (Hoboken); 2013 Feb; 70(2):67-73. PubMed ID: 23124969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurofilaments can undergo axonal transport and cytoskeletal incorporation in a discontinuous manner.
    Chan WK; Yabe JT; Pimenta AF; Ortiz D; Shea TB
    Cell Motil Cytoskeleton; 2005 Nov; 62(3):166-79. PubMed ID: 16211584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in slow transport kinetics induced by estramustine phosphate, an agent binding to microtubule-associated proteins.
    Sahenk Z; Mendell JR
    J Neurosci Res; 1992 Aug; 32(4):481-93. PubMed ID: 1382136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites.
    Yabe JT; Wang FS; Chylinski T; Katchmar T; Shea TB
    Cell Motil Cytoskeleton; 2001 Sep; 50(1):1-12. PubMed ID: 11746668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F; Roy S; Brady ST; Black MM
    J Neurosci Res; 2005 Feb; 79(4):442-50. PubMed ID: 15635594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospho-dependent association of neurofilament proteins with kinesin in situ.
    Yabe JT; Jung C; Chan WK; Shea TB
    Cell Motil Cytoskeleton; 2000 Apr; 45(4):249-62. PubMed ID: 10744858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal regeneration is compromised in NFH-LacZ transgenic mice but not in NFH-GFP mice.
    Cassereau J; Nicolas G; Lonchampt P; Pinier M; Barthelaix A; Eyer J; Letournel F
    Neuroscience; 2013 Jan; 228():101-8. PubMed ID: 23079625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible mechanism for neurofilament slowing down in myelinated axon: Phosphorylation-induced variation of NF kinetics.
    Jia Z; Li Y
    PLoS One; 2021; 16(3):e0247656. PubMed ID: 33711034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference with kinesin-based anterograde neurofilament axonal transport increases neurofilament-neurofilament bundling.
    Sunil N; Lee S; Shea TB
    Cytoskeleton (Hoboken); 2012 Jun; 69(6):371-9. PubMed ID: 22434685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses.
    Shea TB; Lee S
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):589-95. PubMed ID: 21990272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protein phosphatase inhibitor okadaic acid increases axonal neurofilaments and neurite caliber, and decreases axonal microtubules in NB2a/d1 cells.
    Shea TB; Paskevich PA; Beermann ML
    J Neurosci Res; 1993 Aug; 35(5):507-21. PubMed ID: 8397305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C; Shea TB
    Brain Res Mol Brain Res; 2004 Mar; 122(2):188-92. PubMed ID: 15010211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.
    Pijak DS; Hall GF; Tenicki PJ; Boulos AS; Lurie DI; Selzer ME
    J Comp Neurol; 1996 May; 368(4):569-81. PubMed ID: 8744444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of slow axonal transport in vivo.
    Terada S; Nakata T; Peterson AC; Hirokawa N
    Science; 1996 Aug; 273(5276):784-8. PubMed ID: 8670416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules.
    Kushkuley J; Chan WK; Lee S; Eyer J; Leterrier JF; Letournel F; Shea TB
    J Cell Sci; 2009 Oct; 122(Pt 19):3579-86. PubMed ID: 19737816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ; Paggi P; Katz MJ
    J Cell Biol; 1992 May; 117(3):607-16. PubMed ID: 1374068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth cones contain a dynamic population of neurofilament subunits.
    Chan WK; Yabe JT; Pimenta AF; Ortiz D; Shea TB
    Cell Motil Cytoskeleton; 2003 Mar; 54(3):195-207. PubMed ID: 12589678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites.
    Lee S; Sunil N; Tejada JM; Shea TB
    J Cell Sci; 2011 Apr; 124(Pt 7):1022-31. PubMed ID: 21363889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis.
    Zhao Y; Szaro BG
    J Comp Neurol; 1994 May; 343(1):158-72. PubMed ID: 7517961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule motors, phosphorylation and axonal transport of neurofilaments.
    Shea TB
    J Neurocytol; 2000; 29(11-12):873-87. PubMed ID: 11466476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.