These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 23124973)
1. Direct and indirect use of GFP whole cell biosensors for the assessment of bioprocess performances: design of milliliter scale-down bioreactors. Brognaux A; Thonart P; Delvigne F; Neubauer P; Twizere JC; Francis F; Gorret N Biotechnol Prog; 2013; 29(1):48-59. PubMed ID: 23124973 [TBL] [Abstract][Full Text] [Related]
2. Green fluorescent protein (GFP) leakage from microbial biosensors provides useful information for the evaluation of the scale-down effect. Delvigne F; Brognaux A; Francis F; Twizere JC; Gorret N; Sorensen SJ; Thonart P Biotechnol J; 2011 Aug; 6(8):968-78. PubMed ID: 21695786 [TBL] [Abstract][Full Text] [Related]
3. Design of growth-dependent biosensors based on destabilized GFP for the detection of physiological behavior of Escherichia coli in heterogeneous bioreactors. Han S; Delvigne F; Brognaux A; Charbon GE; Sørensen SJ Biotechnol Prog; 2013; 29(2):553-63. PubMed ID: 23335499 [TBL] [Abstract][Full Text] [Related]
4. Potentiality of using microbial biosensors for the detection of substrate heterogeneities and the assessment of microbial viability in industrial bioreactors: a complete set of experiments in chemostat and scale down reactors, and elaboration of a mini scale-down platform. Brognaux A; Neubauer P; Twizere JC; Thonart P; Delvigne F Commun Agric Appl Biol Sci; 2012; 77(1):3-7. PubMed ID: 22558747 [No Abstract] [Full Text] [Related]
5. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Puskeiler R; Kaufmann K; Weuster-Botz D Biotechnol Bioeng; 2005 Mar; 89(5):512-23. PubMed ID: 15669089 [TBL] [Abstract][Full Text] [Related]
6. Feeding strategies enhance high cell density cultivation and protein expression in milliliter scale bioreactors. Faust G; Janzen NH; Bendig C; Römer L; Kaufmann K; Weuster-Botz D Biotechnol J; 2014 Oct; 9(10):1293-303. PubMed ID: 25104316 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Lara AR; Leal L; Flores N; Gosset G; Bolívar F; Ramírez OT Biotechnol Bioeng; 2006 Feb; 93(2):372-85. PubMed ID: 16187334 [TBL] [Abstract][Full Text] [Related]
9. Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. Glazyrina J; Krause M; Junne S; Glauche F; Storm D; Neubauer P N Biotechnol; 2012 Jan; 29(2):235-42. PubMed ID: 22100433 [TBL] [Abstract][Full Text] [Related]
10. Milliliter-scale stirred tank reactors for the cultivation of microorganisms. Hortsch R; Weuster-Botz D Adv Appl Microbiol; 2010; 73():61-82. PubMed ID: 20800759 [TBL] [Abstract][Full Text] [Related]
11. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Norman A; Hestbjerg Hansen L; Sørensen SJ Appl Environ Microbiol; 2005 May; 71(5):2338-46. PubMed ID: 15870320 [TBL] [Abstract][Full Text] [Related]
12. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Kim M; Lim JW; Kim HJ; Lee SK; Lee SJ; Kim T Biosens Bioelectron; 2015 Mar; 65():257-64. PubMed ID: 25461167 [TBL] [Abstract][Full Text] [Related]
13. A model-based framework for parallel scale-down fed-batch cultivations in mini-bioreactors for accelerated phenotyping. Anane E; García ÁC; Haby B; Hans S; Krausch N; Krewinkel M; Hauptmann P; Neubauer P; Cruz Bournazou MN Biotechnol Bioeng; 2019 Nov; 116(11):2906-2918. PubMed ID: 31317526 [TBL] [Abstract][Full Text] [Related]
14. Characterization and feasibility of a miniaturized stirred tank bioreactor to perform E. coli high cell density fed-batch fermentations. Ali S; Perez-Pardo MA; Aucamp JP; Craig A; Bracewell DG; Baganz F Biotechnol Prog; 2012; 28(1):66-75. PubMed ID: 21954170 [TBL] [Abstract][Full Text] [Related]
15. Toward a stochastic formulation of microbial growth in relation to bioreactor performances: case study of an E. coli fed-batch process. Delvigne F; Destain J; Thonart P Biotechnol Prog; 2006; 22(4):1114-24. PubMed ID: 16889388 [TBL] [Abstract][Full Text] [Related]
16. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors. Dahlgren ME; Powell AL; Greasham RL; George HA Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346 [TBL] [Abstract][Full Text] [Related]
17. Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Burmølle M; Hansen LH; Oregaard G; Sørensen SJ Microb Ecol; 2003 Mar; 45(3):226-36. PubMed ID: 12658522 [TBL] [Abstract][Full Text] [Related]
18. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Lara AR; Caspeta L; Gosset G; Bolívar F; Ramírez OT Biotechnol Bioeng; 2008 Mar; 99(4):893-901. PubMed ID: 17929322 [TBL] [Abstract][Full Text] [Related]
19. Optical tracking of a stress-responsive gene amplifier applied to cell-based biosensing and the study of synthetic architectures. Martineau RL; Stout V; Towe BC Biosens Bioelectron; 2010 Apr; 25(8):1881-8. PubMed ID: 20149630 [TBL] [Abstract][Full Text] [Related]
20. A comparison of high cell density fed-batch fermentations involving both induced and non-induced recombinant Escherichia coli under well-mixed small-scale and simulated poorly mixed large-scale conditions. Hewitt CJ; Onyeaka H; Lewis G; Taylor IW; Nienow AW Biotechnol Bioeng; 2007 Feb; 96(3):495-505. PubMed ID: 16902956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]