These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23125151)
21. Comparative study of silk fibroin porous scaffolds derived from salt/water and sucrose/hexafluoroisopropanol in cartilage formation. Makaya K; Terada S; Ohgo K; Asakura T J Biosci Bioeng; 2009 Jul; 108(1):68-75. PubMed ID: 19577196 [TBL] [Abstract][Full Text] [Related]
22. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311 [TBL] [Abstract][Full Text] [Related]
23. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584 [TBL] [Abstract][Full Text] [Related]
24. Water-insoluble amorphous silk fibroin scaffolds from aqueous solutions. Fan Z; Xiao L; Lu G; Ding Z; Lu Q J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):798-808. PubMed ID: 31207049 [TBL] [Abstract][Full Text] [Related]
25. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
26. Su D; Ding S; Shi W; Huang X; Jiang L J Biomater Appl; 2019 Jul; 34(1):36-46. PubMed ID: 31027446 [No Abstract] [Full Text] [Related]
27. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. Mobini S; Hoyer B; Solati-Hashjin M; Lode A; Nosoudi N; Samadikuchaksaraei A; Gelinsky M J Biomed Mater Res A; 2013 Aug; 101(8):2392-404. PubMed ID: 23436754 [TBL] [Abstract][Full Text] [Related]
28. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
29. Bone tissue engineering with premineralized silk scaffolds. Kim HJ; Kim UJ; Kim HS; Li C; Wada M; Leisk GG; Kaplan DL Bone; 2008 Jun; 42(6):1226-34. PubMed ID: 18387349 [TBL] [Abstract][Full Text] [Related]
30. Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. Wadbua P; Promdonkoy B; Maensiri S; Siri S Int J Biol Macromol; 2010 Jun; 46(5):493-501. PubMed ID: 20338193 [TBL] [Abstract][Full Text] [Related]
31. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040 [TBL] [Abstract][Full Text] [Related]
32. Effect of the surface morphology of silk fibroin scaffolds for bone regeneration. Bhawal UK; Uchida R; Kuboyama N; Asakura T; Hiratsuka K; Nishiyama N Biomed Mater Eng; 2016 Sep; 27(4):413-424. PubMed ID: 27689574 [TBL] [Abstract][Full Text] [Related]
33. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute. Kweon H; Lee KG; Chae CH; Balázsi C; Min SK; Kim JY; Choi JY; Kim SG J Oral Maxillofac Surg; 2011 Jun; 69(6):1578-86. PubMed ID: 21272978 [TBL] [Abstract][Full Text] [Related]
34. Potential of non-mulberry silk protein fibroin blended and grafted poly(Є-caprolactone) nanofibrous matrices for in vivo bone regeneration. Bhattacharjee P; Naskar D; Maiti TK; Bhattacharya D; Das P; Nandi SK; Kundu SC Colloids Surf B Biointerfaces; 2016 Jul; 143():431-439. PubMed ID: 27037780 [TBL] [Abstract][Full Text] [Related]
35. Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly (Є-caprolactone) nanofibrous scaffold. Bhattacharjee P; Maiti TK; Bhattacharya D; Nandi SK Colloids Surf B Biointerfaces; 2017 Aug; 156():270-281. PubMed ID: 28544959 [TBL] [Abstract][Full Text] [Related]
36. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications. Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912 [TBL] [Abstract][Full Text] [Related]
37. In vitro and in vivo release of basic fibroblast growth factor using a silk fibroin scaffold as delivery carrier. Wongpanit P; Ueda H; Tabata Y; Rujiravanit R J Biomater Sci Polym Ed; 2010; 21(11):1403-19. PubMed ID: 20534193 [TBL] [Abstract][Full Text] [Related]
38. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
40. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]