These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 23125184)
1. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Guo M; Huang BX Proteomics; 2013 Feb; 13(3-4):424-37. PubMed ID: 23125184 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854 [TBL] [Abstract][Full Text] [Related]
7. Delayed times to tissue fixation result in unpredictable global phosphoproteome changes. Gündisch S; Grundner-Culemann K; Wolff C; Schott C; Reischauer B; Machatti M; Groelz D; Schaab C; Tebbe A; Becker KF J Proteome Res; 2013 Oct; 12(10):4424-34. PubMed ID: 23984901 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762 [TBL] [Abstract][Full Text] [Related]
9. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Kosako H; Nagano K Expert Rev Proteomics; 2011 Feb; 8(1):81-94. PubMed ID: 21329429 [TBL] [Abstract][Full Text] [Related]
11. Comparison of SILAC and mTRAQ quantification for phosphoproteomics on a quadrupole orbitrap mass spectrometer. Oppermann FS; Klammer M; Bobe C; Cox J; Schaab C; Tebbe A; Daub H J Proteome Res; 2013 Sep; 12(9):4089-100. PubMed ID: 23898821 [TBL] [Abstract][Full Text] [Related]
12. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Salih E Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747 [TBL] [Abstract][Full Text] [Related]
14. Mass spectrometric tools for systematic analysis of protein phosphorylation. St-Denis N; Gingras AC Prog Mol Biol Transl Sci; 2012; 106():3-32. PubMed ID: 22340712 [TBL] [Abstract][Full Text] [Related]
15. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments. Courcelles M; Bridon G; Lemieux S; Thibault P J Proteome Res; 2012 Jul; 11(7):3753-65. PubMed ID: 22668510 [TBL] [Abstract][Full Text] [Related]
16. Large-scale identification of phosphorylation sites for profiling protein kinase selectivity. Imamura H; Sugiyama N; Wakabayashi M; Ishihama Y J Proteome Res; 2014 Jul; 13(7):3410-9. PubMed ID: 24869485 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. Tedford NC; Hall AB; Graham JR; Murphy CE; Gordon NF; Radding JA Proteomics; 2009 Mar; 9(6):1469-87. PubMed ID: 19294625 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics. Hoehenwarter W; Chen Y; Recuenco-Munoz L; Wienkoop S; Weckwerth W Amino Acids; 2011 Jul; 41(2):329-41. PubMed ID: 20602127 [TBL] [Abstract][Full Text] [Related]
19. Recent advances and challenges in plant phosphoproteomics. Silva-Sanchez C; Li H; Chen S Proteomics; 2015 Mar; 15(5-6):1127-41. PubMed ID: 25429768 [TBL] [Abstract][Full Text] [Related]