These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 23125190)
1. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Kim DY; Chaudhry MA; Kennard ML; Jardon MA; Braasch K; Dionne B; Butler M; Piret JM Biotechnol Prog; 2013; 29(1):165-75. PubMed ID: 23125190 [TBL] [Abstract][Full Text] [Related]
2. Feed development for fed-batch CHO production process by semisteady state analysis. Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108 [TBL] [Abstract][Full Text] [Related]
3. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality. Karengera E; Robotham A; Kelly J; Durocher Y; De Crescenzo G; Henry O Biotechnol Prog; 2018 Mar; 34(2):494-504. PubMed ID: 29314777 [TBL] [Abstract][Full Text] [Related]
4. Increased t-PA yields using ultrafiltration of an inhibitory product from CHO fed-batch culture. Dowd JE; Kwok KE; Piret JM Biotechnol Prog; 2000; 16(5):786-94. PubMed ID: 11027171 [TBL] [Abstract][Full Text] [Related]
5. Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. Altamirano C; Paredes C; Illanes A; Cairó JJ; Gòdia F J Biotechnol; 2004 May; 110(2):171-9. PubMed ID: 15121336 [TBL] [Abstract][Full Text] [Related]
6. Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines. Xu P; Dai XP; Graf E; Martel R; Russell R Biotechnol Prog; 2014; 30(6):1457-68. PubMed ID: 25079388 [TBL] [Abstract][Full Text] [Related]
7. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures. Ghaffari N; Jardon MA; Krahn N; Butler M; Kennard M; Turner RFB; Gopaluni B; Piret JM Biotechnol Prog; 2020 Mar; 36(2):e2946. PubMed ID: 31823468 [TBL] [Abstract][Full Text] [Related]
8. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
9. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of glutamine-dependent autophagy increases t-PA production in CHO cell fed-batch processes. Jardon MA; Sattha B; Braasch K; Leung AO; Côté HC; Butler M; Gorski SM; Piret JM Biotechnol Bioeng; 2012 May; 109(5):1228-38. PubMed ID: 22125188 [TBL] [Abstract][Full Text] [Related]
11. A framework for the systematic design of fed-batch strategies in mammalian cell culture. Kyriakopoulos S; Kontoravdi C Biotechnol Bioeng; 2014 Dec; 111(12):2466-76. PubMed ID: 24975682 [TBL] [Abstract][Full Text] [Related]
12. Optimization of fed-batch parameters and harvest time of CHO cell cultures for a glycosylated product with multiple mechanisms of inactivation. Senger RS; Karim MN Biotechnol Bioeng; 2007 Oct; 98(2):378-90. PubMed ID: 17385745 [TBL] [Abstract][Full Text] [Related]
13. Reduced glutamine concentration improves protein production in growth-arrested CHO-DG44 and HEK-293E cells. Rajendra Y; Kiseljak D; Baldi L; Hacker DL; Wurm FM Biotechnol Lett; 2012 Apr; 34(4):619-26. PubMed ID: 22127760 [TBL] [Abstract][Full Text] [Related]
14. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Chee Furng Wong D; Tin Kam Wong K; Tang Goh L; Kiat Heng C; Gek Sim Yap M Biotechnol Bioeng; 2005 Jan; 89(2):164-77. PubMed ID: 15593097 [TBL] [Abstract][Full Text] [Related]
15. Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells. Sheikholeslami Z; Jolicoeur M; Henry O Biotechnol Prog; 2014; 30(3):535-46. PubMed ID: 24692260 [TBL] [Abstract][Full Text] [Related]
16. Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method. Xing Z; Bishop N; Leister K; Li ZJ Biotechnol Prog; 2010; 26(1):208-19. PubMed ID: 19834967 [TBL] [Abstract][Full Text] [Related]
17. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. Kishishita S; Katayama S; Kodaira K; Takagi Y; Matsuda H; Okamoto H; Takuma S; Hirashima C; Aoyagi H J Biosci Bioeng; 2015 Jul; 120(1):78-84. PubMed ID: 25678240 [TBL] [Abstract][Full Text] [Related]
18. Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products. Kurano N; Leist C; Messi F; Kurano S; Fiechter A J Biotechnol; 1990 Jul; 15(1-2):113-28. PubMed ID: 1366684 [TBL] [Abstract][Full Text] [Related]
19. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Noh SM; Park JH; Lim MS; Kim JW; Lee GM Appl Microbiol Biotechnol; 2017 Feb; 101(3):1035-1045. PubMed ID: 27704181 [TBL] [Abstract][Full Text] [Related]
20. Benchmarking of commercially available CHO cell culture media for antibody production. Reinhart D; Damjanovic L; Kaisermayer C; Kunert R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]