These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 23125190)
21. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Genzel Y; Ritter JB; König S; Alt R; Reichl U Biotechnol Prog; 2005; 21(1):58-69. PubMed ID: 15903241 [TBL] [Abstract][Full Text] [Related]
22. Dynamics of growth and metabolism controlled by glutamine availability in Chinese hamster ovary cells. Wahrheit J; Nicolae A; Heinzle E Appl Microbiol Biotechnol; 2014 Feb; 98(4):1771-83. PubMed ID: 24362913 [TBL] [Abstract][Full Text] [Related]
23. Overexpression of taurine transporter in Chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Tabuchi H; Sugiyama T; Tanaka S; Tainaka S Biotechnol Bioeng; 2010 Dec; 107(6):998-1003. PubMed ID: 20661907 [TBL] [Abstract][Full Text] [Related]
24. Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Hong JK; Cho SM; Yoon SK Appl Microbiol Biotechnol; 2010 Oct; 88(4):869-76. PubMed ID: 20680262 [TBL] [Abstract][Full Text] [Related]
25. Feed optimization in fed-batch culture. Costa AR; Rodrigues ME; Henriques M; Oliveira R; Azeredo J Methods Mol Biol; 2014; 1104():105-16. PubMed ID: 24297412 [TBL] [Abstract][Full Text] [Related]
26. Tuning metabolic efficiency for increased product yield in high titer fed-batch Chinese hamster ovary cell culture. Helfer A; Gros S; Kolwyck D; Karst DJ Biotechnol Prog; 2023; 39(3):e3327. PubMed ID: 36700684 [TBL] [Abstract][Full Text] [Related]
27. Metabolism of PER.C6 cells cultivated under fed-batch conditions at low glucose and glutamine levels. Maranga L; Goochee CF Biotechnol Bioeng; 2006 May; 94(1):139-50. PubMed ID: 16523524 [TBL] [Abstract][Full Text] [Related]
28. Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Lee YY; Yap MG; Hu WS; Wong KT Biotechnol Prog; 2003; 19(2):501-9. PubMed ID: 12675594 [TBL] [Abstract][Full Text] [Related]
29. Fed-batch operation of an industrial cell culture process in shaken microwells. Silk NJ; Denby S; Lewis G; Kuiper M; Hatton D; Field R; Baganz F; Lye GJ Biotechnol Lett; 2010 Jan; 32(1):73-8. PubMed ID: 19760119 [TBL] [Abstract][Full Text] [Related]
30. CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution. Bort JA; Stern B; Borth N Biotechnol J; 2010 Oct; 5(10):1090-7. PubMed ID: 20931603 [TBL] [Abstract][Full Text] [Related]
31. Human 293 cell metabolism in low glutamine-supplied culture: interpretation of metabolic changes through metabolic flux analysis. Nadeau I; Sabatié J; Koehl M; Perrier M; Kamen A Metab Eng; 2000 Oct; 2(4):277-92. PubMed ID: 11120640 [TBL] [Abstract][Full Text] [Related]
32. Neural-network-based identification of tissue-type plasminogen activator protein production and glycosylation in CHO cell culture under shear environment. Senger RS; Karim MN Biotechnol Prog; 2003; 19(6):1828-36. PubMed ID: 14656163 [TBL] [Abstract][Full Text] [Related]
33. Differential gene expression of a feed-spiked super-producing CHO cell line. Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452 [TBL] [Abstract][Full Text] [Related]
34. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938 [TBL] [Abstract][Full Text] [Related]
35. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture. Fan Y; Kildegaard HF; Andersen MR Methods Mol Biol; 2017; 1603():209-226. PubMed ID: 28493133 [TBL] [Abstract][Full Text] [Related]
36. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related]
37. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
38. Development of a fed-batch culture process for enhanced production of recombinant human antithrombin by Chinese hamster ovary cells. Kuwae S; Ohda T; Tamashima H; Miki H; Kobayashi K J Biosci Bioeng; 2005 Nov; 100(5):502-10. PubMed ID: 16384788 [TBL] [Abstract][Full Text] [Related]
39. The effect of amino acid supplementation in an industrial Chinese Hamster Ovary process. Horvat J; Narat M; Spadiut O Biotechnol Prog; 2020 Sep; 36(5):e3001. PubMed ID: 32274904 [TBL] [Abstract][Full Text] [Related]
40. Temperature effects on product-quality-related enzymes in batch CHO cell cultures producing recombinant tPA. Clark KJ; Chaplin FW; Harcum SW Biotechnol Prog; 2004; 20(6):1888-92. PubMed ID: 15575729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]