These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 23125228)
1. LINE-1-derived poly(A) microsatellites undergo rapid shortening and create somatic and germline mosaicism in mice. Grandi FC; Rosser JM; An W Mol Biol Evol; 2013 Mar; 30(3):503-12. PubMed ID: 23125228 [TBL] [Abstract][Full Text] [Related]
2. Characterization of pre-insertion loci of de novo L1 insertions. Gasior SL; Preston G; Hedges DJ; Gilbert N; Moran JV; Deininger PL Gene; 2007 Apr; 390(1-2):190-8. PubMed ID: 17067767 [TBL] [Abstract][Full Text] [Related]
3. Mapping of long interspersed element-1 (L1) insertions by TIPseq provides information about sub chromosomal genetic variation in human embryos. Kohlrausch FB; Wang F; McKerrow W; Grivainis M; Fenyo D; Keefe DL J Assist Reprod Genet; 2024 Sep; 41(9):2257-2269. PubMed ID: 38951360 [TBL] [Abstract][Full Text] [Related]
4. Non-LTR retrotransposons and microsatellites: Partners in genomic variation. Grandi FC; An W Mob Genet Elements; 2013 Jul; 3(4):e25674. PubMed ID: 24195012 [TBL] [Abstract][Full Text] [Related]
5. Epigenetic control of retrotransposon expression in human embryonic stem cells. Macia A; Muñoz-Lopez M; Cortes JL; Hastings RK; Morell S; Lucena-Aguilar G; Marchal JA; Badge RM; Garcia-Perez JL Mol Cell Biol; 2011 Jan; 31(2):300-16. PubMed ID: 21041477 [TBL] [Abstract][Full Text] [Related]
6. A matter of life or death: how microsatellites emerge in and vanish from the human genome. Kelkar YD; Eckert KA; Chiaromonte F; Makova KD Genome Res; 2011 Dec; 21(12):2038-48. PubMed ID: 21994250 [TBL] [Abstract][Full Text] [Related]
7. The changing tails of a novel short interspersed element in Aedes aegypti: genomic evidence for slippage retrotransposition and the relationship between 3' tandem repeats and the poly(dA) tail. Tu Z; Li S; Mao C Genetics; 2004 Dec; 168(4):2037-47. PubMed ID: 15611173 [TBL] [Abstract][Full Text] [Related]
8. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Richardson SR; Gerdes P; Gerhardt DJ; Sanchez-Luque FJ; Bodea GO; Muñoz-Lopez M; Jesuadian JS; Kempen MHC; Carreira PE; Jeddeloh JA; Garcia-Perez JL; Kazazian HH; Ewing AD; Faulkner GJ Genome Res; 2017 Aug; 27(8):1395-1405. PubMed ID: 28483779 [TBL] [Abstract][Full Text] [Related]
10. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. Wimmer K; Callens T; Wernstedt A; Messiaen L PLoS Genet; 2011 Nov; 7(11):e1002371. PubMed ID: 22125493 [TBL] [Abstract][Full Text] [Related]
11. L1 hybridization enrichment: a method for directly accessing de novo L1 insertions in the human germline. Freeman P; Macfarlane C; Collier P; Jeffreys AJ; Badge RM Hum Mutat; 2011 Aug; 32(8):978-88. PubMed ID: 21560187 [TBL] [Abstract][Full Text] [Related]
12. L1 retrotransposons and somatic mosaicism in the brain. Richardson SR; Morell S; Faulkner GJ Annu Rev Genet; 2014; 48():1-27. PubMed ID: 25036377 [TBL] [Abstract][Full Text] [Related]
13. Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells. McKerrow W; Tang Z; Steranka JP; Payer LM; Boeke JD; Keefe D; Fenyö D; Burns KH; Liu C Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1795):20190335. PubMed ID: 32075555 [TBL] [Abstract][Full Text] [Related]
14. Early life experience drives structural variation of neural genomes in mice. Bedrosian TA; Quayle C; Novaresi N; Gage FH Science; 2018 Mar; 359(6382):1395-1399. PubMed ID: 29567711 [TBL] [Abstract][Full Text] [Related]
15. Somatic retrotransposition alters the genetic landscape of the human brain. Baillie JK; Barnett MW; Upton KR; Gerhardt DJ; Richmond TA; De Sapio F; Brennan PM; Rizzu P; Smith S; Fell M; Talbot RT; Gustincich S; Freeman TC; Mattick JS; Hume DA; Heutink P; Carninci P; Jeddeloh JA; Faulkner GJ Nature; 2011 Oct; 479(7374):534-7. PubMed ID: 22037309 [TBL] [Abstract][Full Text] [Related]
16. Alu repeats: a source for the genesis of primate microsatellites. Arcot SS; Wang Z; Weber JL; Deininger PL; Batzer MA Genomics; 1995 Sep; 29(1):136-44. PubMed ID: 8530063 [TBL] [Abstract][Full Text] [Related]
17. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Chen JM; Stenson PD; Cooper DN; Férec C Hum Genet; 2005 Sep; 117(5):411-27. PubMed ID: 15983781 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Alu repeats that are associated with trinucleotide and tetranucleotide repeat microsatellites. Yandava CN; Gastier JM; Pulido JC; Brody T; Sheffield V; Murray J; Buetow K; Duyk GM Genome Res; 1997 Jul; 7(7):716-24. PubMed ID: 9253600 [TBL] [Abstract][Full Text] [Related]
19. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Han K; Sen SK; Wang J; Callinan PA; Lee J; Cordaux R; Liang P; Batzer MA Nucleic Acids Res; 2005; 33(13):4040-52. PubMed ID: 16034026 [TBL] [Abstract][Full Text] [Related]
20. Active Alu element "A-tails": size does matter. Roy-Engel AM; Salem AH; Oyeniran OO; Deininger L; Hedges DJ; Kilroy GE; Batzer MA; Deininger PL Genome Res; 2002 Sep; 12(9):1333-44. PubMed ID: 12213770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]