These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. O'Steen S J Exp Biol; 1998 Feb; 201(Pt 3):439-49. PubMed ID: 9503646 [TBL] [Abstract][Full Text] [Related]
3. Embryonic temperature affects metabolic compensation and thyroid hormones in hatchling snapping turtles. O'Steen S; Janzen FJ Physiol Biochem Zool; 1999; 72(5):520-33. PubMed ID: 10521320 [TBL] [Abstract][Full Text] [Related]
4. Adjustments in cholinergic, adrenergic and purinergic control of cardiovascular function in snapping turtle embryos (Chelydra serpentina) incubated in chronic hypoxia. Eme J; Rhen T; Crossley DA J Comp Physiol B; 2014 Oct; 184(7):891-902. PubMed ID: 25106687 [TBL] [Abstract][Full Text] [Related]
5. Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. O'Steen S J Exp Biol; 1998 Jan; 201(Pt 3):439-49. PubMed ID: 9427676 [TBL] [Abstract][Full Text] [Related]
6. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression. Eme J; Rhen T; Tate KB; Gruchalla K; Kohl ZF; Slay CE; Crossley DA Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R966-79. PubMed ID: 23552497 [TBL] [Abstract][Full Text] [Related]
7. Cardiovascular responses to putative chemoreceptor stimulation of embryonic common snapping turtles (Chelydra serpentina) chronically incubated in hypoxia (10% O Eme J; Tate KB; Rhen T; Crossley DA Comp Biochem Physiol A Mol Integr Physiol; 2021 Sep; 259():110977. PubMed ID: 33984502 [TBL] [Abstract][Full Text] [Related]
8. Seasonal changes in gonadal activity and the effects of stress on reproductive hormones in the common snapping turtle, Chelydra serpentina. Mahmoud IY; Licht P Gen Comp Endocrinol; 1997 Sep; 107(3):359-72. PubMed ID: 9268617 [TBL] [Abstract][Full Text] [Related]
9. Molecular and morphological differentiation of testes and ovaries in relation to the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina. Rhen T; Fagerlie R; Schroeder A; Crossley DA; Lang JW Differentiation; 2015; 89(1-2):31-41. PubMed ID: 25662229 [TBL] [Abstract][Full Text] [Related]
10. Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea). Crossley DA; Crossley JL; Smith C; Harfush M; Sánchez-Sánchez H; Garduño-Paz MV; Méndez-Sánchez JF Comp Biochem Physiol A Mol Integr Physiol; 2017 Sep; 211():69-76. PubMed ID: 28642099 [TBL] [Abstract][Full Text] [Related]
11. Hypoxic alligator embryos: chronic hypoxia, catecholamine levels and autonomic responses of in ovo alligators. Eme J; Altimiras J; Hicks JW; Crossley DA Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):412-20. PubMed ID: 21798363 [TBL] [Abstract][Full Text] [Related]
12. Effect of dichlorodiphenyltrichloroethane on sex determination of the common snapping turtle (Chelydra serpentina serpentina). Portelli MJ; de Solla SR; Brooks RJ; Bishop CA Ecotoxicol Environ Saf; 1999 Jul; 43(3):284-91. PubMed ID: 10381306 [TBL] [Abstract][Full Text] [Related]
13. Effects of maternal identity and incubation temperature on snapping turtle (Chelydra serpentina) metabolism. Steyermark AC; Spotila JR Physiol Biochem Zool; 2000; 73(3):298-306. PubMed ID: 10893169 [TBL] [Abstract][Full Text] [Related]
14. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina. Rhen T; Metzger K; Schroeder A; Woodward R Sex Dev; 2007; 1(4):255-70. PubMed ID: 18391536 [TBL] [Abstract][Full Text] [Related]
15. Critical Windows of Cardiovascular Susceptibility to Developmental Hypoxia in Common Snapping Turtle (Chelydra serpentina) Embryos. Tate KB; Kohl ZF; Eme J; Rhen T; Crossley DA Physiol Biochem Zool; 2015; 88(2):103-15. PubMed ID: 25730266 [TBL] [Abstract][Full Text] [Related]
16. Development of adrenergic and cholinergic receptor cardiovascular regulatory capacity in the Canada goose (Branta canadensis) and domestic goose (Anser anser domesticus). Swart J; Tate K; Crossley DA Comp Biochem Physiol A Mol Integr Physiol; 2014 Jan; 167():59-67. PubMed ID: 24140488 [TBL] [Abstract][Full Text] [Related]
17. Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Beckers F; Verheyden B; Ramaekers D; Swynghedauw B; Aubert AE Clin Exp Pharmacol Physiol; 2006; 33(5-6):431-9. PubMed ID: 16700875 [TBL] [Abstract][Full Text] [Related]
18. Chronic hypoxic incubation blunts thermally dependent cholinergic tone on the cardiovascular system in embryonic American alligator (Alligator mississippiensis). Marks C; Eme J; Elsey RM; Crossley DA J Comp Physiol B; 2013 Oct; 183(7):947-57. PubMed ID: 23632626 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of gonads and oviducts in hatchlings and young of Chelydra serpentina resulting from three incubation temperatures. Yntema CL J Morphol; 1981 Mar; 167(3):297-304. PubMed ID: 7241601 [TBL] [Abstract][Full Text] [Related]
20. Ontogeny of cholinergic and adrenergic cardiovascular regulation in the domestic chicken (Gallus gallus). Crossley D; Altimiras J Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R1091-8. PubMed ID: 10956270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]