BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23125342)

  • 1. Low-pass filters and differential tympanal tuning in a paleotropical bushcricket with an unusually low frequency call.
    Rajaraman K; Mhatre N; Jain M; Postles M; Balakrishnan R; Robert D
    J Exp Biol; 2013 Mar; 216(Pt 5):777-87. PubMed ID: 23125342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound-induced tympanal membrane motion in bushcrickets and its relationship to sensory output.
    Hummel J; Kössl M; Nowotny M
    J Exp Biol; 2011 Nov; 214(Pt 21):3596-604. PubMed ID: 21993788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory mechanics in the grig (
    Woodrow C; Pulver C; Song H; Montealegre-Z F
    Proc Biol Sci; 2022 Apr; 289(1973):20220398. PubMed ID: 35473380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea.
    Robert D; Miles RN; Hoy RR
    J Comp Physiol A; 1996; 179(1):29-44. PubMed ID: 8965258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel acoustic-vibratory multimodal duet.
    Rajaraman K; Godthi V; Pratap R; Balakrishnan R
    J Exp Biol; 2015 Oct; 218(Pt 19):3042-50. PubMed ID: 26254322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory mechanics and sensitivity in the tropical butterfly Morpho peleides (Papilionoidea, Nymphalidae).
    Lucas KM; Windmill JF; Robert D; Yack JE
    J Exp Biol; 2009 Nov; 212(Pt 21):3533-41. PubMed ID: 19837895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral frequency mis-match in the primitive ensiferan Cyphoderris monstrosa (Orthoptera: Haglidae).
    Mason AC; Morris GK; Hoy RR
    J Comp Physiol A; 1999 May; 184(5):543-51. PubMed ID: 10377983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera.
    Römer H; Marquart V; Hardt M
    J Comp Neurol; 1988 Sep; 275(2):201-15. PubMed ID: 3220974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical response of the tympanal membranes of the tree cricket Oecanthus henryi.
    Mhatre N; Montealegre-Z F; Balakrishnan R; Robert D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 May; 195(5):453-62. PubMed ID: 19252913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical filtering for narrow-band hearing in the weta.
    Lomas K; Montealegre-Z F; Parsons S; Field LH; Robert D
    J Exp Biol; 2011 Mar; 214(Pt 5):778-85. PubMed ID: 21307064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanics of sound production in Panacanthus pallicornis (Orthoptera: Tettigoniidae: Conocephalinae): the stridulatory motor patterns.
    Montealegre-Z F; Mason AC
    J Exp Biol; 2005 Apr; 208(Pt 7):1219-37. PubMed ID: 15781883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tuning of auditory receptors in bushcrickets.
    Oldfield BP
    Hear Res; 1985 Jan; 17(1):27-35. PubMed ID: 3997678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the tympanic membrane impedance of the katydid Copiphora gorgonensis (Insecta: Orthoptera: Tettigoniidae).
    Celiker E; Jonsson T; Montealegre-Z F
    J Acoust Soc Am; 2020 Oct; 148(4):1952. PubMed ID: 33138497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera).
    Lakes-Harlan R; Scherberich J
    R Soc Open Sci; 2015 Jun; 2(6):140473. PubMed ID: 26543574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of anuran auditory periphery reveals frequency-dependent adaptation to be a contributing mechanism for two-tone suppression and amplitude modulation coding.
    Wotton JM; Ferragamo MJ
    Hear Res; 2011 Oct; 280(1-2):109-21. PubMed ID: 21565263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of tracheal pressure changes on the responses of the tympanal membrane and auditory receptors in the locust Locusta migratoria L.
    Meyer J; Hedwig B
    J Exp Biol; 1995; 198(Pt 6):1327-39. PubMed ID: 9319210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of high frequencies to human brain activity underlying horizontal localization of natural spatial sounds.
    Leino S; May PJ; Alku P; Liikkanen LA; Tiitinen H
    BMC Neurosci; 2007 Sep; 8():78. PubMed ID: 17897443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory evolution of hearing in tettigoniids with differing communication systems.
    Strauß J; Lehmann AW; Lehmann GU
    J Evol Biol; 2014 Jan; 27(1):200-13. PubMed ID: 24329900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral selectivity during phonotaxis: a comparative study in Neoconocephalus (Orthoptera: Tettigoniidae).
    Deily JA; Schul J
    J Exp Biol; 2006 May; 209(Pt 9):1757-64. PubMed ID: 16621956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The auditory-vibratory system of the bushcricket Polysarcus denticauda (Phaneropterinae, Tettigoniidae). I. Morphology of the complex tibial organs.
    Sickmann T; Kalmring K; Müller A
    Hear Res; 1997 Feb; 104(1-2):155-66. PubMed ID: 9119759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.