These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 23125978)
1. Proton-electron transfer pathways in the reactions of peroxyl and dpph˙ radicals with hydrogen-bonded phenols. Amorati R; Menichetti S; Viglianisi C; Foti MC Chem Commun (Camb); 2012 Dec; 48(97):11904-6. PubMed ID: 23125978 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and thermodynamic parameters for the equilibrium reactions of phenols with the dpph. radical. Foti MC; Daquino C Chem Commun (Camb); 2006 Aug; (30):3252-4. PubMed ID: 17028760 [TBL] [Abstract][Full Text] [Related]
3. Scavenging of dpph* radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Musialik M; Litwinienko G Org Lett; 2005 Oct; 7(22):4951-4. PubMed ID: 16235930 [TBL] [Abstract][Full Text] [Related]
4. Use and Abuse of the DPPH(•) Radical. Foti MC J Agric Food Chem; 2015 Oct; 63(40):8765-76. PubMed ID: 26390267 [TBL] [Abstract][Full Text] [Related]
5. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. Goupy P; Dufour C; Loonis M; Dangles O J Agric Food Chem; 2003 Jan; 51(3):615-22. PubMed ID: 12537431 [TBL] [Abstract][Full Text] [Related]
6. Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity. Babu S; Uppu S; Claville MO; Uppu RM Toxicol Mech Methods; 2013 May; 23(4):273-80. PubMed ID: 23193990 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of curcumin oxidation by 2,2-diphenyl-1-picrylhydrazyl (DPPH˙): an interesting case of separated coupled proton-electron transfer. Foti MC; Slavova-Kazakova A; Rocco C; Kancheva VD Org Biomol Chem; 2016 Sep; 14(35):8331-7. PubMed ID: 27530442 [TBL] [Abstract][Full Text] [Related]
8. Electron-transfer mechanism in radical-scavenging reactions by a vitamin E model in a protic medium. Nakanishi I; Kawashima T; Ohkubo K; Kanazawa H; Inami K; Mochizuki M; Fukuhara K; Okuda H; Ozawa T; Itoh S; Fukuzumi S; Ikota N Org Biomol Chem; 2005 Feb; 3(4):626-9. PubMed ID: 15703798 [TBL] [Abstract][Full Text] [Related]
9. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Litwinienko G; Ingold KU Acc Chem Res; 2007 Mar; 40(3):222-30. PubMed ID: 17370994 [TBL] [Abstract][Full Text] [Related]
10. The L-type calcium channel blockers, hantzsch 1,4-dihydropyridines, are not peroxyl radical-trapping, chain-breaking antioxidants. Mulder P; Litwinienko G; Lin S; MacLean PD; Barclay LR; Ingold KU Chem Res Toxicol; 2006 Jan; 19(1):79-85. PubMed ID: 16411659 [TBL] [Abstract][Full Text] [Related]
11. DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Zheng CD; Li G; Li HQ; Xu XJ; Gao JM; Zhang AL Nat Prod Commun; 2010 Nov; 5(11):1759-65. PubMed ID: 21213975 [TBL] [Abstract][Full Text] [Related]
12. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants. Boudier A; Tournebize J; Bartosz G; El Hani S; Bengueddour R; Sapin-Minet A; Leroy P Anal Chim Acta; 2012 Jan; 711():97-106. PubMed ID: 22152802 [TBL] [Abstract][Full Text] [Related]
13. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols. Rhile IJ; Markle TF; Nagao H; DiPasquale AG; Lam OP; Lockwood MA; Rotter K; Mayer JM J Am Chem Soc; 2006 May; 128(18):6075-88. PubMed ID: 16669677 [TBL] [Abstract][Full Text] [Related]
14. Reactions of reactive oxygen species (ROS) with curcumin analogues: Structure-activity relationship. Singh U; Barik A; Singh BG; Priyadarsini KI Free Radic Res; 2011 Mar; 45(3):317-25. PubMed ID: 21034358 [TBL] [Abstract][Full Text] [Related]
15. [Detection of antioxidative capacity of bamboo leaf extract by scavenging organic free radical DPPH]. Guo XF; Yue YD; Tang F; Wang J; Yao X Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1578-82. PubMed ID: 18844164 [TBL] [Abstract][Full Text] [Related]
16. Beyond DPPH: Use of Fluorescence-Enabled Inhibited Autoxidation to Predict Oxidative Cell Death Rescue. Shah R; Farmer LA; Zilka O; Van Kessel ATM; Pratt DA Cell Chem Biol; 2019 Nov; 26(11):1594-1607.e7. PubMed ID: 31564533 [TBL] [Abstract][Full Text] [Related]
17. Persistent hydrogen-bonded and non-hydrogen-bonded phenoxyl radicals. Wanke R; Benisvy L; Kuznetsov ML; da Silva MF; Pombeiro AJ Chemistry; 2011 Oct; 17(42):11882-92. PubMed ID: 21898619 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of the reaction between the antioxidant Trolox and the free radical DPPH in semi-aqueous solution. Friaa O; Brault D Org Biomol Chem; 2006 Jun; 4(12):2417-23. PubMed ID: 16763687 [TBL] [Abstract][Full Text] [Related]
19. One-electron oxidation of a hydrogen-bonded phenol occurs by concerted proton-coupled electron transfer. Rhile IJ; Mayer JM J Am Chem Soc; 2004 Oct; 126(40):12718-9. PubMed ID: 15469234 [TBL] [Abstract][Full Text] [Related]
20. Thiophenols, Promising Scavengers of Peroxyl Radicals: Mechanisms and kinetics. Carreon-Gonzalez M; Vivier-Bunge A; Alvarez-Idaboy JR J Comput Chem; 2019 Sep; 40(24):2103-2110. PubMed ID: 31124582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]