These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23126272)

  • 21. Pharmacological evidence for capacitative Ca(2+) entry in cannulated and pressurized skeletal muscle arterioles.
    Potocnik SJ; Hill MA
    Br J Pharmacol; 2001 Sep; 134(2):247-56. PubMed ID: 11564642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels.
    Knot HJ; Standen NB; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):211-21. PubMed ID: 9490841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels.
    Dabertrand F; Nelson MT; Brayden JE
    Circ Res; 2012 Jan; 110(2):285-94. PubMed ID: 22095728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells.
    Löhn M; Jessner W; Fürstenau M; Wellner M; Sorrentino V; Haller H; Luft FC; Gollasch M
    Circ Res; 2001 Nov; 89(11):1051-7. PubMed ID: 11717163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alkaline pH shifts Ca2+ sparks to Ca2+ waves in smooth muscle cells of pressurized cerebral arteries.
    Heppner TJ; Bonev AD; Santana LF; Nelson MT
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2169-76. PubMed ID: 12427589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal aspects of Ca(2+) and myosin phosphorylation during myogenic and norepinephrine-induced arteriolar constriction.
    Zou H; Ratz PH; Hill MA
    J Vasc Res; 2000; 37(6):556-67. PubMed ID: 11146410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonuniform changes in arteriolar myogenic tone within skeletal muscle following hindlimb unweighting.
    Heaps CL; Bowles DK
    J Appl Physiol (1985); 2002 Mar; 92(3):1145-51. PubMed ID: 11842052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ryanodine-induced vasoconstriction of the gerbil spiral modiolar artery depends on the Ca
    Krishnamoorthy G; Reimann K; Wangemann P
    BMC Physiol; 2016 Nov; 16(1):6. PubMed ID: 27806708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tyrosine phosphorylation modulates arteriolar tone but is not fundamental to myogenic response.
    Spurrell BE; Murphy TV; Hill MA
    Am J Physiol Heart Circ Physiol; 2000 Feb; 278(2):H373-82. PubMed ID: 10666067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. cAMP/PKA-dependent increases in Ca Sparks, oscillations and SR Ca stores in retinal arteriolar myocytes after exposure to vasopressin.
    Jeffries O; McGahon MK; Bankhead P; Lozano MM; Scholfield CN; Curtis TM; McGeown JG
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1591-8. PubMed ID: 19959643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular signalling in arteriolar myogenic constriction: involvement of tyrosine phosphorylation pathways.
    Murphy TV; Spurrell BE; Hill MA
    Clin Exp Pharmacol Physiol; 2002 Jul; 29(7):612-9. PubMed ID: 12060106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selected contribution: NO released to flow reduces myogenic tone of skeletal muscle arterioles by decreasing smooth muscle Ca(2+) sensitivity.
    Ungvari Z; Koller A
    J Appl Physiol (1985); 2001 Jul; 91(1):522-7; discussion 504-5. PubMed ID: 11408472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrin-mediated mechanotransduction in renal vascular smooth muscle cells: activation of calcium sparks.
    Balasubramanian L; Ahmed A; Lo CM; Sham JS; Yip KP
    Am J Physiol Regul Integr Comp Physiol; 2007 Oct; 293(4):R1586-94. PubMed ID: 17699564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells.
    Rueda A; Song M; Toro L; Stefani E; Valdivia HH
    J Physiol; 2006 Nov; 576(Pt 3):887-901. PubMed ID: 16931553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2+-activated Cl- current in retinal arteriolar smooth muscle.
    McGahon MK; Needham MA; Scholfield CN; McGeown JG; Curtis TM
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):364-71. PubMed ID: 18775864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis.
    Harraz OF; Brett SE; Zechariah A; Romero M; Puglisi JL; Wilson SM; Welsh DG
    Arterioscler Thromb Vasc Biol; 2015 Aug; 35(8):1843-51. PubMed ID: 26069238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myogenic constriction of human coronary arterioles.
    Miller FJ; Dellsperger KC; Gutterman DD
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H257-64. PubMed ID: 9249498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow modulation of pressure-sensitive tone in rat pial arterioles: role of the endothelium.
    Ward ME; Yan L; Kelly S; Angle MR
    Anesthesiology; 2000 Dec; 93(6):1456-64. PubMed ID: 11149441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries.
    VanBavel E; Sorop O; Andreasen D; Pfaffendorf M; Jensen BL
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2239-43. PubMed ID: 12388244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.