These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 23126654)
1. Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. Kay P; Groszmann M; Ross JJ; Parish RW; Swain SM New Phytol; 2013 Jan; 197(1):73-87. PubMed ID: 23126654 [TBL] [Abstract][Full Text] [Related]
2. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. Girin T; Paicu T; Stephenson P; Fuentes S; Körner E; O'Brien M; Sorefan K; Wood TA; Balanzá V; Ferrándiz C; Smyth DR; Østergaard L Plant Cell; 2011 Oct; 23(10):3641-53. PubMed ID: 21990939 [TBL] [Abstract][Full Text] [Related]
3. An INDEHISCENT-Controlled Auxin Response Specifies the Separation Layer in Early Arabidopsis Fruit. van Gelderen K; van Rongen M; Liu A; Otten A; Offringa R Mol Plant; 2016 Jun; 9(6):857-69. PubMed ID: 26995296 [TBL] [Abstract][Full Text] [Related]
5. Control of fruit patterning in Arabidopsis by INDEHISCENT. Liljegren SJ; Roeder AH; Kempin SA; Gremski K; Østergaard L; Guimil S; Reyes DK; Yanofsky MF Cell; 2004 Mar; 116(6):843-53. PubMed ID: 15035986 [TBL] [Abstract][Full Text] [Related]
6. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Groszmann M; Paicu T; Alvarez JP; Swain SM; Smyth DR Plant J; 2011 Dec; 68(5):816-29. PubMed ID: 21801252 [TBL] [Abstract][Full Text] [Related]
7. Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Balanzà V; Roig-Villanova I; Di Marzo M; Masiero S; Colombo L Development; 2016 Sep; 143(18):3372-81. PubMed ID: 27510967 [TBL] [Abstract][Full Text] [Related]
8. The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Mizzotti C; Mendes MA; Caporali E; Schnittger A; Kater MM; Battaglia R; Colombo L Plant J; 2012 May; 70(3):409-20. PubMed ID: 22176531 [TBL] [Abstract][Full Text] [Related]
9. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Dorcey E; Urbez C; Blázquez MA; Carbonell J; Perez-Amador MA Plant J; 2009 Apr; 58(2):318-32. PubMed ID: 19207215 [TBL] [Abstract][Full Text] [Related]
10. The gar2 and rga alleles increase the growth of gibberellin-deficient pollen tubes in Arabidopsis. Swain SM; Muller AJ; Singh DP Plant Physiol; 2004 Feb; 134(2):694-705. PubMed ID: 14764903 [TBL] [Abstract][Full Text] [Related]
11. Auxin production in the endosperm drives seed coat development in Figueiredo DD; Batista RA; Roszak PJ; Hennig L; Köhler C Elife; 2016 Nov; 5():. PubMed ID: 27848912 [TBL] [Abstract][Full Text] [Related]
12. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis. Ogawa M; Kay P; Wilson S; Swain SM Plant Cell; 2009 Jan; 21(1):216-33. PubMed ID: 19168715 [TBL] [Abstract][Full Text] [Related]
13. CELLULASE6 and MANNANASE7 Affect Cell Differentiation and Silique Dehiscence. He H; Bai M; Tong P; Hu Y; Yang M; Wu H Plant Physiol; 2018 Mar; 176(3):2186-2201. PubMed ID: 29348141 [TBL] [Abstract][Full Text] [Related]
14. Transparent testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola. Deng W; Chen G; Peng F; Truksa M; Snyder CL; Weselake RJ Plant Physiol; 2012 Oct; 160(2):978-89. PubMed ID: 22846192 [TBL] [Abstract][Full Text] [Related]
15. Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Singh DP; Jermakow AM; Swain SM Plant Cell; 2002 Dec; 14(12):3133-47. PubMed ID: 12468732 [TBL] [Abstract][Full Text] [Related]
16. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Sorefan K; Girin T; Liljegren SJ; Ljung K; Robles P; Galván-Ampudia CS; Offringa R; Friml J; Yanofsky MF; Østergaard L Nature; 2009 May; 459(7246):583-6. PubMed ID: 19478783 [TBL] [Abstract][Full Text] [Related]
17. Demonstration in vivo of the role of Arabidopsis PLIM2 actin-binding proteins during pollination. Sudo K; Park JI; Sakazono S; Masuko-Suzuki H; Osaka M; Kawagishi M; Fujita K; Maruoka M; Nanjo H; Suzuki G; Suwabe K; Watanabe M Genes Genet Syst; 2013; 88(5):279-87. PubMed ID: 24694391 [TBL] [Abstract][Full Text] [Related]
18. ECHIDNA protein impacts on male fertility in Arabidopsis by mediating trans-Golgi network secretory trafficking during anther and pollen development. Fan X; Yang C; Klisch D; Ferguson A; Bhaellero RP; Niu X; Wilson ZA Plant Physiol; 2014 Mar; 164(3):1338-49. PubMed ID: 24424320 [TBL] [Abstract][Full Text] [Related]
19. Paul P; Dhatt BK; Miller M; Folsom JJ; Wang Z; Krassovskaya I; Liu K; Sandhu J; Yu H; Zhang C; Obata T; Staswick P; Walia H Plant Physiol; 2020 Feb; 182(2):933-948. PubMed ID: 31818903 [TBL] [Abstract][Full Text] [Related]