BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23126679)

  • 1. Mechanism of benzylic hydroxylation by 4-hydroxymandelate synthase. A computational study.
    Wójcik A; Broclawik E; Siegbahn PE; Borowski T
    Biochemistry; 2012 Nov; 51(47):9570-80. PubMed ID: 23126679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the mechanism of hydroxylation by 4-hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase from intermediate partitioning in active site variants.
    Shah DD; Conrad JA; Heinz B; Brownlee JM; Moran GR
    Biochemistry; 2011 Sep; 50(35):7694-704. PubMed ID: 21815644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate partitioning kinetic isotope effects for the NIH shift of 4-hydroxyphenylpyruvate dioxygenase and the hydroxylation reaction of hydroxymandelate synthase reveal mechanistic complexity.
    Shah DD; Conrad JA; Moran GR
    Biochemistry; 2013 Sep; 52(35):6097-107. PubMed ID: 23941465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two roads diverged: the structure of hydroxymandelate synthase from Amycolatopsis orientalis in complex with 4-hydroxymandelate.
    Brownlee J; He P; Moran GR; Harrison DH
    Biochemistry; 2008 Feb; 47(7):2002-13. PubMed ID: 18215022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism.
    Borowski T; Bassan A; Siegbahn PE
    Biochemistry; 2004 Sep; 43(38):12331-42. PubMed ID: 15379572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate-limiting catalytic steps of hydroxymandelate synthase from Amycolatopsis orientalis.
    He P; Conrad JA; Moran GR
    Biochemistry; 2010 Mar; 49(9):1998-2007. PubMed ID: 20112984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4-Hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase: exemplars of the α-keto acid dependent oxygenases.
    Moran GR
    Arch Biochem Biophys; 2014 Feb; 544():58-68. PubMed ID: 24211436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of hydroxyphenylpyruvate dioxygenases into hydroxymandelate synthases by directed evolution.
    O'Hare HM; Huang F; Holding A; Choroba OW; Spencer JB
    FEBS Lett; 2006 Jun; 580(14):3445-50. PubMed ID: 16730004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-Hydroxyphenylpyruvate dioxygenase.
    Moran GR
    Arch Biochem Biophys; 2005 Jan; 433(1):117-28. PubMed ID: 15581571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. We two alone will sing: the two-substrate alpha-keto acid-dependent oxygenases.
    He P; Moran GR
    Curr Opin Chem Biol; 2009 Oct; 13(4):443-50. PubMed ID: 19625206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of substrate positioning in the catalytic reaction of 4-hydroxyphenylpyruvate dioxygenase-A QM/MM Study.
    Wójcik A; Broclawik E; Siegbahn PE; Lundberg M; Moran G; Borowski T
    J Am Chem Soc; 2014 Oct; 136(41):14472-85. PubMed ID: 25157877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases.
    Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI
    J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interaction of Hydroxymandelate Synthase with the 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor: NTBC.
    Conrad JA; Moran GR
    Inorganica Chim Acta; 2008 Mar; 361(4):1197-1201. PubMed ID: 18496607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral hydroxylation at the mononuclear nonheme Fe(II) center of 4-(S) hydroxymandelate synthase--a structure-activity relationship analysis.
    Di Giuro CM; Konstantinovics C; Rinner U; Nowikow C; Leitner E; Straganz GD
    PLoS One; 2013; 8(7):e68932. PubMed ID: 23935907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study.
    Du L; Gao J; Liu Y; Zhang D; Liu C
    Org Biomol Chem; 2012 Feb; 10(5):1014-24. PubMed ID: 22143311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzene oxide intermediate in homogentisate formation.
    Gunsior M; Ravel J; Challis GL; Townsend CA
    Biochemistry; 2004 Jan; 43(3):663-74. PubMed ID: 14730970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of selective halogenation by SyrB2: a computational study.
    Borowski T; Noack H; Radoń M; Zych K; Siegbahn PE
    J Am Chem Soc; 2010 Sep; 132(37):12887-98. PubMed ID: 20738087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Redesign of Enzyme via the Combination of Quantum Mechanics/Molecular Mechanics, Molecular Dynamics, and Structural Biology Study.
    Lin HY; Chen X; Dong J; Yang JF; Xiao H; Ye Y; Li LH; Zhan CG; Yang WC; Yang GF
    J Am Chem Soc; 2021 Sep; 143(38):15674-15687. PubMed ID: 34542283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.