These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23126738)

  • 1. Collective degrees of freedom involved in absorption and desorption of surfactant molecules in spherical non-ionic micelles.
    Ahn YN; Mohan G; Kopelevich DI
    J Chem Phys; 2012 Oct; 137(16):164902. PubMed ID: 23126738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale model for kinetics of formation and disintegration of spherical micelles.
    Mohan G; Kopelevich DI
    J Chem Phys; 2008 Jan; 128(4):044905. PubMed ID: 18247998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained kinetic computations for rare events: application to micelle formation.
    Kopelevich DI; Panagiotopoulos AZ; Kevrekidis IG
    J Chem Phys; 2005 Jan; 122(4):44908. PubMed ID: 15740299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles.
    Sangwai AV; Sureshkumar R
    Langmuir; 2011 Jun; 27(11):6628-38. PubMed ID: 21524093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence visualization and modeling of a micelle-free zone formed at the interface between an oil and an aqueous micellar phase during interfacial surfactant transport.
    Bhole NS; Huang F; Maldarelli C
    Langmuir; 2010 Oct; 26(20):15761-78. PubMed ID: 20849093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of ionic and nonionic surfactant micelles with a generalized Born implicit-solvent model.
    Wang Y; Wallace JA; Koenig PH; Shen JK
    J Comput Chem; 2011 Aug; 32(11):2348-58. PubMed ID: 21544841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The correlation between the micelle morphology of surface-active ionic liquids with self-assembly and thermodynamic characteristics: coarse-grained MD simulation and experiment.
    Fallah-Totkar H; Bagheri A; Maddah M
    Phys Chem Chem Phys; 2023 Aug; 25(34):23164-23176. PubMed ID: 37605522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of amphiphilic molecules in solution: micelle formation and dynamic coexistence.
    Fujiwara S; Itoh T; Hashimoto M; Horiuchi R
    J Chem Phys; 2009 Apr; 130(14):144901. PubMed ID: 19368465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant desorption and scission free energies for cylindrical and spherical micelles from umbrella-sampling molecular dynamics simulations.
    Wen B; Bai B; Larson RG
    J Colloid Interface Sci; 2021 Oct; 599():773-784. PubMed ID: 33989930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a reverse micellar system by 1H NMR.
    Lemyre JL; Ritcey AM
    Langmuir; 2010 May; 26(9):6250-5. PubMed ID: 20099857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of mixed cationic/anionic wormlike micelles.
    Yakovlev DS; Boek ES
    Langmuir; 2007 Jun; 23(12):6588-97. PubMed ID: 17477551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of water nanodroplets and aqueous protons in non-ionic reverse micelles.
    Rodriguez J; Laria D; Guàrdia E; Martí J
    Phys Chem Chem Phys; 2009 Mar; 11(10):1484-90. PubMed ID: 19240924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles: effects of sodium chloride and sodium salicylate salts.
    Wang Z; Larson RG
    J Phys Chem B; 2009 Oct; 113(42):13697-710. PubMed ID: 19476369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of micellization of sodium hexyl sulfate.
    Sammalkorpi M; Sanders S; Panagiotopoulos AZ; Karttunen M; Haataja M
    J Phys Chem B; 2011 Feb; 115(6):1403-10. PubMed ID: 21271698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigations of the molecular interaction of anticancer drug mitoxantrone with non-ionic surfactant micelles.
    Enache M; Volanschi E
    J Pharm Pharmacol; 2012 May; 64(5):688-96. PubMed ID: 22471364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.