These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23126784)

  • 1. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.
    Tang W; Sun H; Wang W
    Rev Sci Instrum; 2012 Oct; 83(10):104701. PubMed ID: 23126784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An MRI receiver coil produced by inkjet printing directly on to a flexible substrate.
    Mager D; Peter A; Tin LD; Fischer E; Smith PJ; Hennig J; Korvink JG
    IEEE Trans Med Imaging; 2010 Feb; 29(2):482-7. PubMed ID: 20129848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation for unknown acquisition delay caused by digital receiver without external synchronization in NMR and MRI.
    Qin X; Jie S; Jianqi L; Gengying L
    MAGMA; 2005 Sep; 18(4):217-24. PubMed ID: 16155760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-channel magnetic resonance imaging receiver using frequency domain multiplexing.
    He W; Qin X; Jiejing R; Gengying L
    Rev Sci Instrum; 2007 Jan; 78(1):015102. PubMed ID: 17503941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner.
    Yoon HS; Ko GB; Kwon SI; Lee CM; Ito M; Chan Song I; Lee DS; Hong SJ; Lee JS
    J Nucl Med; 2012 Apr; 53(4):608-14. PubMed ID: 22414638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-field magnetic resonance imaging spectrometer using an oven-controlled crystal oscillator as the local oscillator of its radio frequency transceiver.
    Liang X; Tang X; Tang W; Gao JH
    Rev Sci Instrum; 2014 Sep; 85(9):094705. PubMed ID: 25273752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable multichannel MRI data acquisition system.
    Bodurka J; Ledden PJ; van Gelderen P; Chu R; de Zwart JA; Morris D; Duyn JH
    Magn Reson Med; 2004 Jan; 51(1):165-71. PubMed ID: 14705057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A digital receiver with fast frequency- and gain-switching capabilities for MRI systems.
    Ruipeng N; Yidong D; Guang Y; Gengying L
    MAGMA; 2009 Dec; 22(6):333-42. PubMed ID: 19774405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A floating-point digital receiver for MRI.
    Hoenninger JC; Crooks LE; Arakawa M
    IEEE Trans Biomed Eng; 2002 Jul; 49(7):689-93. PubMed ID: 12083303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A radio-frequency source using direct digital synthesis and field programmable gate array for nuclear magnetic resonance.
    Liang X; Weimin W
    Rev Sci Instrum; 2009 Dec; 80(12):124703. PubMed ID: 20059160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fully Integrated Dual-Channel On-Coil CMOS Receiver for Array Coils in 1.5-10.5 T MRI.
    Sporrer B; Wu L; Bettini L; Vogt C; Reber J; Marjanovic J; Burger T; Brunner DO; Pruessmann KP; Troster G; Huang Q
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1245-1255. PubMed ID: 29293422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A realization of digital wireless transmission for MRI signals based on 802.11b.
    Wei J; Liu Z; Chai Z; Yuan J; Lian J; Shen GX
    J Magn Reson; 2007 Jun; 186(2):358-63. PubMed ID: 17433744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor.
    Levesque P; Sawan M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1654-65. PubMed ID: 19686981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Algorithm of digital demodulation and filtering in MRI spectrometers].
    Pan WY; Liu ZM; Zhou HQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Jul; 32(4):271-4. PubMed ID: 18973037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.
    Liang X; Binghe S; Yueping M; Ruyan Z
    Rev Sci Instrum; 2013 May; 84(5):054702. PubMed ID: 23742570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Undersampling to acquire nuclear magnetic resonance images.
    PĂ©rez P; Santos A
    Med Eng Phys; 2004 Jul; 26(6):523-9. PubMed ID: 15234688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optically powered CMOS tracking system for 3 T magnetic resonance environment.
    Sarioglu B; Tumer M; Cindemir U; Camli B; Dundar G; Ozturk C; Yalcinkaya AD
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):12-20. PubMed ID: 24893369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid polarizing field cycling in magnetic resonance imaging.
    Matter NI; Scott GC; Grafendorfer T; Macovski A; Conolly SM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):84-93. PubMed ID: 16398417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly integrated FPGA-based nuclear magnetic resonance spectrometer.
    Takeda K
    Rev Sci Instrum; 2007 Mar; 78(3):033103. PubMed ID: 17411174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of field-cycled magnetic resonance systems for small animal imaging.
    Gilbert KM; Handler WB; Scholl TJ; Odegaard JW; Chronik BA
    Phys Med Biol; 2006 Jun; 51(11):2825-41. PubMed ID: 16723769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.