These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23126789)

  • 1. Compact microwave cavity for high performance rubidium frequency standards.
    Stefanucci C; Bandi T; Merli F; Pellaton M; Affolderbach C; Mileti G; Skrivervik AK
    Rev Sci Instrum; 2012 Oct; 83(10):104706. PubMed ID: 23126789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optics integrated compact cavity for rubidium atomic frequency standards.
    Kaintura J; Ghadiya A; Soni S; Bandi TN
    Rev Sci Instrum; 2019 Aug; 90(8):084701. PubMed ID: 31472656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loaded Microwave Cavity for Compact Vapor-Cell Clocks.
    Gozzelino M; Micalizio S; Calosso CE; Godone A; Lin H; Levi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):872-879. PubMed ID: 32746219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact high-performance continuous-wave double-resonance rubidium standard with 1.4 × 10(-13) τ(-1/2) stability.
    Bandi T; Affolderbach C; Stefanucci C; Merli F; Skrivervik AK; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1769-78. PubMed ID: 25389156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.
    Mattar SM; Elnaggar SY
    J Magn Reson; 2011 Apr; 209(2):174-82. PubMed ID: 21300559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave cavities for vapor cell frequency standards.
    Godone A; Micalizio S; Levi F; Calosso C
    Rev Sci Instrum; 2011 Jul; 82(7):074703. PubMed ID: 21806210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.
    Lee Y; Park YS; Jo JG; Yang JJ; Hwang YS
    Rev Sci Instrum; 2012 Feb; 83(2):02B316. PubMed ID: 22380295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.
    François B; Calosso CE; Abdel Hafiz M; Micalizio S; Boudot R
    Rev Sci Instrum; 2015 Sep; 86(9):094707. PubMed ID: 26429467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual-mode microwave resonator for double electron-electron spin resonance spectroscopy at W-band microwave frequencies.
    Tkach I; Sicoli G; Höbartner C; Bennati M
    J Magn Reson; 2011 Apr; 209(2):341-6. PubMed ID: 21333570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physics package for rubidium atomic frequency standard with a short-term stability of 2.4 × 10
    Hao Q; Li W; He S; Lv J; Wang P; Mei G
    Rev Sci Instrum; 2016 Dec; 87(12):123111. PubMed ID: 28040944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.
    Reijerse E; Lendzian F; Isaacson R; Lubitz W
    J Magn Reson; 2012 Jan; 214(1):237-43. PubMed ID: 22196894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave oscillator using piezoelectric thin-film resonator aiming for ultraminiaturization of atomic clock.
    Hara M; Yano Y; Kajita M; Nishino H; Ibata Y; Toda M; Hara S; Kasamatsu A; Ito H; Ono T; Ido T
    Rev Sci Instrum; 2018 Oct; 89(10):105002. PubMed ID: 30399742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved coupling design for high-frequency TE011 electron paramagnetic resonance cavities.
    Savitsky A; Grishin Y; Rakhmatullin R; Reijerse E; Lubitz W
    Rev Sci Instrum; 2013 Jan; 84(1):014704. PubMed ID: 23387676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.
    François B; Calosso CE; Danet JM; Boudot R
    Rev Sci Instrum; 2014 Sep; 85(9):094709. PubMed ID: 25273756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable X-band system for solution state dynamic nuclear polarization.
    Armstrong BD; Lingwood MD; McCarney ER; Brown ER; Blümler P; Han S
    J Magn Reson; 2008 Apr; 191(2):273-81. PubMed ID: 18226943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable microwave coaxial cavity plasma system at atmospheric pressure.
    Song H; Hong JM; Lee KH; Choi JJ
    Rev Sci Instrum; 2008 May; 79(5):054702. PubMed ID: 18513083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry.
    Quddusi HM; Ramsey CM; Gonzalez-Pons JC; Henderson JJ; del Barco E; de Loubens G; Kent AD
    Rev Sci Instrum; 2008 Jul; 79(7):074703. PubMed ID: 18681725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1.
    Schröder R; Hübner U; Griebsch D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):383-92. PubMed ID: 12322889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.