These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
685 related articles for article (PubMed ID: 23127066)
1. A pencil beam algorithm for helium ion beam therapy. Fuchs H; Strobele J; Schreiner T; Hirtl A; Georg D Med Phys; 2012 Nov; 39(11):6726-37. PubMed ID: 23127066 [TBL] [Abstract][Full Text] [Related]
2. A pencil beam algorithm for magnetic resonance image-guided proton therapy. Padilla-Cabal F; Georg D; Fuchs H Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking analytical calculations of proton doses in heterogeneous matter. Ciangaru G; Polf JC; Bues M; Smith AR Med Phys; 2005 Dec; 32(12):3511-23. PubMed ID: 16475750 [TBL] [Abstract][Full Text] [Related]
4. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations. Saini J; Maes D; Egan A; Bowen SR; St James S; Janson M; Wong T; Bloch C Phys Med Biol; 2017 Sep; 62(19):7659-7681. PubMed ID: 28749373 [TBL] [Abstract][Full Text] [Related]
5. Photon scatter in portal images: accuracy of a fluence based pencil beam superposition algorithm. McCurdy BM; Pistorius S Med Phys; 2000 May; 27(5):913-22. PubMed ID: 10841394 [TBL] [Abstract][Full Text] [Related]
6. Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay. Lysakovski P; Besuglow J; Kopp B; Mein S; Tessonnier T; Ferrari A; Haberer T; Debus J; Mairani A Med Phys; 2023 Apr; 50(4):2510-2524. PubMed ID: 36542403 [TBL] [Abstract][Full Text] [Related]
7. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model. Ronga MG; Deut U; Bonfrate A; De Marzi L Med Phys; 2023 Dec; 50(12):8009-8022. PubMed ID: 37730956 [TBL] [Abstract][Full Text] [Related]
8. Comparison of basic features of proton and helium ion pencil beams in water using GATE. Ströbele J; Schreiner T; Fuchs H; Georg D Z Med Phys; 2012 Sep; 22(3):170-8. PubMed ID: 22265081 [TBL] [Abstract][Full Text] [Related]
9. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries. Westerly DC; Mo X; Tomé WA; Mackie TR; DeLuca PM Med Phys; 2013 Jun; 40(6):061706. PubMed ID: 23718585 [TBL] [Abstract][Full Text] [Related]
10. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance. Ali I; Ahmad S Med Dosim; 2013; 38(3):255-61. PubMed ID: 23558145 [TBL] [Abstract][Full Text] [Related]
11. A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm. Ding GX; Cygler JE; Yu CW; Kalach NI; Daskalov G Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):622-33. PubMed ID: 16168854 [TBL] [Abstract][Full Text] [Related]
12. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields. Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559 [TBL] [Abstract][Full Text] [Related]
13. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy. Schiavi A; Senzacqua M; Pioli S; Mairani A; Magro G; Molinelli S; Ciocca M; Battistoni G; Patera V Phys Med Biol; 2017 Sep; 62(18):7482-7504. PubMed ID: 28873069 [TBL] [Abstract][Full Text] [Related]
14. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion. Fuchs H; Alber M; Schreiner T; Georg D Med Phys; 2015 Sep; 42(9):5157-66. PubMed ID: 26328967 [TBL] [Abstract][Full Text] [Related]
15. An analytical dose-averaged LET calculation algorithm considering the off-axis LET enhancement by secondary protons for spot-scanning proton therapy. Hirayama S; Matsuura T; Ueda H; Fujii Y; Fujii T; Takao S; Miyamoto N; Shimizu S; Fujimoto R; Umegaki K; Shirato H Med Phys; 2018 Jul; 45(7):3404-3416. PubMed ID: 29788552 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy. Petti PL Int J Radiat Oncol Biol Phys; 1996 Jul; 35(5):1049-57. PubMed ID: 8751415 [TBL] [Abstract][Full Text] [Related]
17. Experimental evaluation of a spatial resampling technique to improve the accuracy of pencil-beam dose calculation in proton therapy. Egashira Y; Nishio T; Matsuura T; Kameoka S; Uesaka M Med Phys; 2012 Jul; 39(7):4104-14. PubMed ID: 22830743 [TBL] [Abstract][Full Text] [Related]
18. Experimental verification and clinical implementation of a commercial Monte Carlo electron beam dose calculation algorithm. Fragoso M; Pillai S; Solberg TD; Chetty IJ Med Phys; 2008 Mar; 35(3):1028-38. PubMed ID: 18404938 [TBL] [Abstract][Full Text] [Related]
19. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380 [TBL] [Abstract][Full Text] [Related]
20. Macro Monte Carlo for dose calculation of proton beams. Fix MK; Frei D; Volken W; Born EJ; Aebersold DM; Manser P Phys Med Biol; 2013 Apr; 58(7):2027-44. PubMed ID: 23458969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]