These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23127077)

  • 1. Toward quantifying the composition of soft tissues by spectral CT with Medipix3.
    Ronaldson JP; Zainon R; Scott NJ; Gieseg SP; Butler AP; Butler PH; Anderson NG
    Med Phys; 2012 Nov; 39(11):6847-57. PubMed ID: 23127077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral CT of carotid atherosclerotic plaque: comparison with histology.
    Zainon R; Ronaldson JP; Janmale T; Scott NJ; Buckenham TM; Butler AP; Butler PH; Doesburg RM; Gieseg SP; Roake JA; Anderson NG
    Eur Radiol; 2012 Dec; 22(12):2581-8. PubMed ID: 22760344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of unconstrained three-material decomposition: imaging an excised human heart using a prototype silicon photon-counting CT detector.
    Grönberg F; Lundberg J; Sjölin M; Persson M; Bujila R; Bornefalk H; Almqvist H; Holmin S; Danielsson M
    Eur Radiol; 2020 Nov; 30(11):5904-5912. PubMed ID: 32588212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Least squares parameter estimation methods for material decomposition with energy discriminating detectors.
    Le Huy Q; Molloi S
    Med Phys; 2011 Jan; 38(1):245-55. PubMed ID: 21361193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral CT imaging of vulnerable plaque with two independent biomarkers.
    Baturin P; Alivov Y; Molloi S
    Phys Med Biol; 2012 Jul; 57(13):4117-38. PubMed ID: 22683885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dedicated phantom materials for spectral radiography and CT.
    Shikhaliev PM
    Phys Med Biol; 2012 Mar; 57(6):1575-93. PubMed ID: 22397927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid tissue surrogates for X-ray and CT phantom studies.
    FitzGerald PF; Colborn RE; Edic PM; Lambert JW; Bonitatibus PJ; Yeh BM
    Med Phys; 2017 Dec; 44(12):6251-6260. PubMed ID: 28986933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft tissue imaging with photon counting spectroscopic CT.
    Shikhaliev PM
    Phys Med Biol; 2015 Mar; 60(6):2453-74. PubMed ID: 25739788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
    Shikhaliev PM
    Phys Med Biol; 2012 Mar; 57(6):1595-615. PubMed ID: 22398007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fat quantification in dual-layer detector spectral CT: How to handle iron overload, varying tube voltage and radiation dose Indices.
    Molwitz I; Campbell GM; Knopp T; Schubert N; Erley J; Löser A; Adam G; Yamamura J; Fischer R; Ozga AK; Szwargulski P
    PLoS One; 2024; 19(5):e0302863. PubMed ID: 38781228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of liver fat in the presence of iron and iodine: an ex-vivo dual-energy CT study.
    Fischer MA; Gnannt R; Raptis D; Reiner CS; Clavien PA; Schmidt B; Leschka S; Alkadhi H; Goetti R
    Invest Radiol; 2011 Jun; 46(6):351-8. PubMed ID: 21263329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of iron deposit on the accuracy of quantifying liver fat fraction using multi-material decomposition algorithm in dual-energy spectral computed tomography.
    Du D; Wu X; Wang J; Chen H; Song J; Liu B
    J Appl Clin Med Phys; 2021 Aug; 22(8):236-242. PubMed ID: 34288379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography.
    Tran DN; Straka M; Roos JE; Napel S; Fleischmann D
    Acad Radiol; 2009 Feb; 16(2):160-71. PubMed ID: 19124101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative material characterization from multi-energy photon counting CT.
    Alessio AM; MacDonald LR
    Med Phys; 2013 Mar; 40(3):031108. PubMed ID: 23464288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of iron in the presence of calcium with dual-energy computed tomography (DECT) in an ex vivo porcine plaque model.
    Wang J; Garg N; Duan X; Liu Y; Leng S; Yu L; Ritman EL; Kantor B; McCollough CH
    Phys Med Biol; 2011 Nov; 56(22):7305-16. PubMed ID: 22036792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation and quantification of materials with energy discriminating computed tomography: a phantom study.
    Le HQ; Molloi S
    Med Phys; 2011 Jan; 38(1):228-37. PubMed ID: 21361191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.
    de Vries A; Roessl E; Kneepkens E; Thran A; Brendel B; Martens G; Proska R; Nicolay K; Grüll H
    Invest Radiol; 2015 Apr; 50(4):297-304. PubMed ID: 25551821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.