These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23127524)

  • 1. Nutritional and host effects on methanogenesis in the grazing ruminant.
    Clark H
    Animal; 2013 Mar; 7 Suppl 1():41-8. PubMed ID: 23127524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting methane production and mitigation in ruminants.
    Shibata M; Terada F
    Anim Sci J; 2010 Feb; 81(1):2-10. PubMed ID: 20163666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.
    Patra AK
    Environ Monit Assess; 2012 Apr; 184(4):1929-52. PubMed ID: 21547374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forage use to improve environmental sustainability of ruminant production.
    Guyader J; Janzen HH; Kroebel R; Beauchemin KA
    J Anim Sci; 2016 Aug; 94(8):3147-3158. PubMed ID: 27695772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to reduce methane emissions from farmed ruminants grazing on pasture.
    Buddle BM; Denis M; Attwood GT; Altermann E; Janssen PH; Ronimus RS; Pinares-Patiño CS; Muetzel S; Neil Wedlock D
    Vet J; 2011 Apr; 188(1):11-7. PubMed ID: 20347354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.
    Haas Yd; Windig JJ; Calus MP; Dijkstra J; Haan Md; Bannink A; Veerkamp RF
    J Dairy Sci; 2011 Dec; 94(12):6122-34. PubMed ID: 22118100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement and prediction of enteric methane emission.
    Sejian V; Lal R; Lakritz J; Ezeji T
    Int J Biometeorol; 2011 Jan; 55(1):1-16. PubMed ID: 20809221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigating climate change: the role of domestic livestock.
    Gill M; Smith P; Wilkinson JM
    Animal; 2010 Mar; 4(3):323-33. PubMed ID: 22443938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants.
    Pickering NK; Oddy VH; Basarab J; Cammack K; Hayes B; Hegarty RS; Lassen J; McEwan JC; Miller S; Pinares-Patiño CS; de Haas Y
    Animal; 2015 Sep; 9(9):1431-40. PubMed ID: 26055577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production.
    Roques S; Martinez-Fernandez G; Ramayo-Caldas Y; Popova M; Denman S; Meale SJ; Morgavi DP
    Annu Rev Anim Biosci; 2024 Feb; 12():321-343. PubMed ID: 38079599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.
    Kingston-Smith AH; Marshall AH; Moorby JM
    Animal; 2013 Mar; 7 Suppl 1():79-88. PubMed ID: 22717231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional strategies in ruminants: A lifetime approach.
    McGrath J; Duval SM; Tamassia LFM; Kindermann M; Stemmler RT; de Gouvea VN; Acedo TS; Immig I; Williams SN; Celi P
    Res Vet Sci; 2018 Feb; 116():28-39. PubMed ID: 28943061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
    Jeyanathan J; Martin C; Morgavi DP
    Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of productivity in improving the environmental sustainability of ruminant production systems.
    Capper JL; Bauman DE
    Annu Rev Anim Biosci; 2013 Jan; 1():469-89. PubMed ID: 25387028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-based strategies towards minimising 'livestock's long shadow'.
    Kingston-Smith AH; Edwards JE; Huws SA; Kim EJ; Abberton M
    Proc Nutr Soc; 2010 Nov; 69(4):613-20. PubMed ID: 20682089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period.
    Wims CM; Deighton MH; Lewis E; O'Loughlin B; Delaby L; Boland TM; O'Donovan M
    J Dairy Sci; 2010 Oct; 93(10):4976-85. PubMed ID: 20855032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feeding distillers dried grains with solubles and organic trace mineral sources to swine and the resulting effect on gaseous emissions.
    Li W; Powers W; Hill GM
    J Anim Sci; 2011 Oct; 89(10):3286-99. PubMed ID: 21571896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems.
    Bell MJ; Wall E; Russell G; Simm G; Stott AW
    J Dairy Sci; 2011 Jul; 94(7):3662-78. PubMed ID: 21700056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil.
    Martin C; Rouel J; Jouany JP; Doreau M; Chilliard Y
    J Anim Sci; 2008 Oct; 86(10):2642-50. PubMed ID: 18469051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New aspects and strategies for methane mitigation from ruminants.
    Kumar S; Choudhury PK; Carro MD; Griffith GW; Dagar SS; Puniya M; Calabro S; Ravella SR; Dhewa T; Upadhyay RC; Sirohi SK; Kundu SS; Wanapat M; Puniya AK
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):31-44. PubMed ID: 24247990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.