BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23128319)

  • 1. Metal-free hydrogenation catalysis of polycyclic aromatic hydrocarbons.
    Segawa Y; Stephan DW
    Chem Commun (Camb); 2012 Dec; 48(98):11963-5. PubMed ID: 23128319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic hydrogenation rate of polycyclic aromatic hydrocarbons in supercritical carbon dioxide containing polymer-stabilized palladium nanoparticles.
    Liao W; Liu HW; Chen HJ; Chang WY; Chiu KH; Wai CM
    Chemosphere; 2011 Jan; 82(4):573-80. PubMed ID: 21030065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive hydrogenation of polycyclic aromatic hydrocarbons catalyzed by metalloporphyrins.
    Nelkenbaum E; Dror I; Berkowitz B
    Chemosphere; 2007 Jun; 68(2):210-7. PubMed ID: 17335868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrogenation of polycyclic aromatic hydrocarbons over palladium/gamma-Al2O3 under mild conditions.
    Yuan T; Marshall WD
    J Hazard Mater; 2005 Nov; 126(1-3):149-57. PubMed ID: 16087290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous catalytic hydrogenation of polyaromatic hydrocarbon compounds in hydrogen-supercritical carbon dioxide.
    Yuan T; Fournier AR; Proudlock R; Marshall WD
    Environ Sci Technol; 2007 Mar; 41(6):1983-8. PubMed ID: 17410794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diborylenetetraaminoperylenes (DIBOTAP): a new class of highly fluorescent functional polycyclic aromatic hydrocarbons with N-B-N units.
    Riehm T; De Paoli G; Wadepohl H; De Cola L; Gade LH
    Chem Commun (Camb); 2008 Nov; (42):5348-50. PubMed ID: 18985206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-free hydrogenation of unsaturated hydrocarbons employing molecular hydrogen.
    Paradies J
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3552-7. PubMed ID: 24519904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insight on the hydrogenation of conjugated alkenes with h(2) catalyzed by early main-group metal catalysts.
    Zeng G; Li S
    Inorg Chem; 2010 Apr; 49(7):3361-9. PubMed ID: 20196551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palladium(0)-catalyzed cyclization of 1,6-diyn-3-yl carbonates with a nucleophilic functionality: efficient synthesis of polycyclic benzo[b]fluorene derivatives via allene intermediates.
    Zhu S; Wu L; Huang X
    Org Biomol Chem; 2012 May; 10(18):3696-704. PubMed ID: 22495553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.
    Veljković DŽ
    J Mol Graph Model; 2018 Mar; 80():121-125. PubMed ID: 29331729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfluorinated polycyclic aromatic hydrocarbons: anthracene, phenanthrene, pyrene, tetracene, chrysene, and triphenylene.
    Feng X; Li Q; Gu J; Cotton FA; Xie Y; Schaefer HF
    J Phys Chem A; 2009 Feb; 113(5):887-94. PubMed ID: 19133794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arenium acid catalyzed deuteration of aromatic hydrocarbons.
    Duttwyler S; Butterfield AM; Siegel JS
    J Org Chem; 2013 Mar; 78(5):2134-8. PubMed ID: 23163918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.
    McSkimming A; Chan B; Bhadbhade MM; Ball GE; Colbran SB
    Chemistry; 2015 Feb; 21(7):2821-34. PubMed ID: 25504622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycyclic aromatic hydrocarbons: trends for bonding hydrogen.
    Rasmussen JA
    J Phys Chem A; 2013 May; 117(20):4279-85. PubMed ID: 23621608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of affinity of molecules for carbon nanotubes.
    Yoo J; Ozawa H; Fujigaya T; Nakashima N
    Nanoscale; 2011 Jun; 3(6):2517-22. PubMed ID: 21541372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic hydrogenation with frustrated Lewis pairs: selectivity achieved by size-exclusion design of Lewis acids.
    Eros G; Nagy K; Mehdi H; Pápai I; Nagy P; Király P; Tárkányi G; Soós T
    Chemistry; 2012 Jan; 18(2):574-85. PubMed ID: 22161804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis of BN-embedded tetraphenes and their photophysical properties.
    Huang H; Pan Z; Cui C
    Chem Commun (Camb); 2016 Mar; 52(22):4227-30. PubMed ID: 26912372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge transfer energies of the complexes of (dibenzoylmethanato)boron difluoride with indeno-pyridines and polynuclear aromatic hydrocarbons.
    Chaudhuri T; Salampuria S; Tapaswi PK; Mukhopadhyay C; Chattopadhyay S; Banerjee M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():181-5. PubMed ID: 23474477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds.
    Cataldo F; Angelini G; García-Hernández DA; Manchado A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():68-79. PubMed ID: 23603577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design.
    Eros G; Mehdi H; Pápai I; Rokob TA; Király P; Tárkányi G; Soós T
    Angew Chem Int Ed Engl; 2010 Sep; 49(37):6559-63. PubMed ID: 20549755
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.