These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23128966)

  • 21. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt.
    Zhao J; Li J; Ying P; Zhang W; Meng L; Li C
    Chem Commun (Camb); 2013 May; 49(40):4477-9. PubMed ID: 23571606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model reaction assesses contribution of H-tunneling and coupled motions to enzyme catalysis.
    Liu Q; Zhao Y; Hammann B; Eilers J; Lu Y; Kohen A
    J Org Chem; 2012 Aug; 77(16):6825-33. PubMed ID: 22834675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoenzymatic synthesis through sustainable NADH regeneration by SiO2-supported quantum dots.
    Lee SH; Ryu J; Nam DH; Park CB
    Chem Commun (Camb); 2011 Apr; 47(16):4643-5. PubMed ID: 21336344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional etching profiles and surface speciations (via attenuated total reflection-fourier transform infrared spectroscopy) of silicon nanowires in NH4F-buffered HF solutions: a double passivation model.
    Teo BK; Chen WW; Sun XH; Wang SD; Lee ST
    J Phys Chem B; 2005 Nov; 109(46):21716-24. PubMed ID: 16853821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of silicon nanowires on H-terminated Si {111} surface templates studied by transmission electron microscopy.
    Ozaki N; Ohno Y; Kikkawa J; Takeda S
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i25-9. PubMed ID: 16157636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ex situ vapor phase boron doping of silicon nanowires using BBr3.
    Doerk GS; Lestari G; Liu F; Carraro C; Maboudian R
    Nanoscale; 2010 Jul; 2(7):1165-70. PubMed ID: 20648344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-driven molecular shuttles modified on silicon nanowires.
    Zhang T; Mu L; She G; Shi W
    Chem Commun (Camb); 2012 Jan; 48(3):452-4. PubMed ID: 22080114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution.
    Bunimovich YL; Shin YS; Yeo WS; Amori M; Kwong G; Heath JR
    J Am Chem Soc; 2006 Dec; 128(50):16323-31. PubMed ID: 17165787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases.
    Liang ZX; Tsigos I; Bouriotis V; Klinman JP
    J Am Chem Soc; 2004 Aug; 126(31):9500-1. PubMed ID: 15291528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Porosification-reduced optical trapping of silicon nanostructures.
    To WK; Fu J; Yang X; Roy VA; Huang Z
    Nanoscale; 2012 Sep; 4(19):5835-9. PubMed ID: 22899347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. What are the differences between ascorbic acid and NADH as hydride and electron sources in vivo on thermodynamics, kinetics, and mechanism?
    Zhu XQ; Mu YY; Li XT
    J Phys Chem B; 2011 Dec; 115(49):14794-811. PubMed ID: 22035071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism and applications of phosphite dehydrogenase.
    Relyea HA; van der Donk WA
    Bioorg Chem; 2005 Jun; 33(3):171-89. PubMed ID: 15888310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold-enhanced low-temperature oxidation of silicon nanowires.
    Xie T; Schmidt V; Pippel E; Senz S; Gösele U
    Small; 2008 Jan; 4(1):64-8. PubMed ID: 18076010
    [No Abstract]   [Full Text] [Related]  

  • 35. High pressure Raman scattering of silicon nanowires.
    Khachadorian S; Papagelis K; Scheel H; Colli A; Ferrari AC; Thomsen C
    Nanotechnology; 2011 May; 22(19):195707. PubMed ID: 21430319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active-site conformational changes associated with hydride transfer in proton-translocating transhydrogenase.
    Mather OC; Singh A; van Boxel GI; White SA; Jackson JB
    Biochemistry; 2004 Aug; 43(34):10952-64. PubMed ID: 15323555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires.
    Liu YC; Rieben N; Iversen L; Sørensen BS; Park J; Nygård J; Martinez KL
    Nanotechnology; 2010 Jun; 21(24):245105. PubMed ID: 20498527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH).
    Immanuel S; Sivasubramanian R; Gul R; Dar MA
    Chem Asian J; 2020 Dec; 15(24):4256-4270. PubMed ID: 33164351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coenzyme regeneration in hexanol oxidation catalyzed by alcohol dehydrogenase.
    Vrsalović Presečki A; Makovšek K; Vasić-Rački Đ
    Appl Biochem Biotechnol; 2012 Jun; 167(3):595-611. PubMed ID: 22581078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.