These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23129011)

  • 1. Miniature asymmetric ultracapacitor of patterned carbon nanotubes and hydrous ruthenium dioxide.
    Chen CH; Tsai DS; Chung WH; Chiou YD; Lee KY; Huang YS
    Nanotechnology; 2012 Dec; 23(48):485402. PubMed ID: 23129011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor.
    Liu R; Cho SI; Lee SB
    Nanotechnology; 2008 May; 19(21):215710. PubMed ID: 21730589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors.
    Zhou J; Zhao H; Mu X; Chen J; Zhang P; Wang Y; He Y; Zhang Z; Pan X; Xie E
    Nanoscale; 2015 Sep; 7(35):14697-706. PubMed ID: 26280064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoNi
    Cao X; He J; Li H; Kang L; He X; Sun J; Jiang R; Xu H; Lei Z; Liu ZH
    Small; 2018 Jul; 14(27):e1800998. PubMed ID: 29847710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance.
    Senokos E; Reguero V; Palma J; Vilatela JJ; Marcilla R
    Nanoscale; 2016 Feb; 8(6):3620-8. PubMed ID: 26809811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors.
    Chen YM; Cai JH; Huang YS; Lee KY; Tsai DS; Tiong KK
    Nanotechnology; 2011 Sep; 22(35):355708. PubMed ID: 21828896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers.
    Xu P; Wei B; Cao Z; Zheng J; Gong K; Li F; Yu J; Li Q; Lu W; Byun JH; Kim BS; Yan Y; Chou TW
    ACS Nano; 2015 Jun; 9(6):6088-96. PubMed ID: 25961131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage.
    Tao J; Liu N; Rao J; Ding L; Al Bahrani MR; Li L; Su J; Gao Y
    Nanoscale; 2014 Dec; 6(24):15073-9. PubMed ID: 25367363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance.
    Sugimoto W; Iwata H; Yokoshima K; Murakami Y; Takasu Y
    J Phys Chem B; 2005 Apr; 109(15):7330-8. PubMed ID: 16851839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide.
    Zhao D; Guo X; Gao Y; Gao F
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5583-9. PubMed ID: 22988980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic supercapacitance of carbon nanotubes covered with copper hexacyanoferrate.
    Song F; Huo D; Hu J; Huang H; Yuan J; Shen J; Wang AJ
    Nanotechnology; 2019 Dec; 30(50):505401. PubMed ID: 31469111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors.
    Kim JY; Kim KH; Kim HK; Park SH; Roh KC; Kim KB
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16686-93. PubMed ID: 26161814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.