BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23129401)

  • 1. Are cyanobacterial blooms trophic dead ends?
    Perga ME; Domaizon I; Guillard J; Hamelet V; Anneville O
    Oecologia; 2013 Jun; 172(2):551-62. PubMed ID: 23129401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of toxic cyanobacterial blooms on Eurasian perch (Perca fluviatilis): experimental study and in situ observations in a peri-alpine lake.
    Sotton B; Guillard J; Bony S; Devaux A; Domaizon I; Givaudan N; Crespeau F; Huet H; Anneville O
    PLoS One; 2012; 7(12):e52243. PubMed ID: 23272228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination.
    Sotton B; Guillard J; Anneville O; Maréchal M; Savichtcheva O; Domaizon I
    Sci Total Environ; 2014 Jan; 466-467():152-63. PubMed ID: 23906853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in phytoplankton and zooplankton communities in three cyanobacteria-dominated lakes after treatment with hydrogen peroxide.
    Piel T; Sandrini G; Weenink EFJ; Qin H; Herk MJV; Morales-Grooters ML; Schuurmans JM; Slot PC; Wijn G; Arntz J; Zervou SK; Kaloudis T; Hiskia A; Huisman J; Visser PM
    Harmful Algae; 2024 Mar; 133():102585. PubMed ID: 38485435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of Planktothrix-derived toxins in aquatic food webs: A case study in Lake Mindelsee (Germany).
    Riehle E; Beach DG; Multrus S; Parmar TP; Martin-Creuzburg D; Dietrich DR
    Ecotoxicol Environ Saf; 2024 Mar; 273():116154. PubMed ID: 38422789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation of diazotrophic nitrogen into pelagic food webs.
    Woodland RJ; Holland DP; Beardall J; Smith J; Scicluna T; Cook PL
    PLoS One; 2013; 8(6):e67588. PubMed ID: 23840744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of cyanobacterial carbon to a higher trophic-level fish community in a eutrophic lake food web: fatty acid and stable isotope analyses.
    Fujibayashi M; Okano K; Takada Y; Mizutani H; Uchida N; Nishimura O; Miyata N
    Oecologia; 2018 Nov; 188(3):901-912. PubMed ID: 30191297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanobacterial blooms modify food web structure and interactions in western Lake Erie.
    Briland RD; Stone JP; Manubolu M; Lee J; Ludsin SA
    Harmful Algae; 2020 Feb; 92():101586. PubMed ID: 32113601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels.
    Taipale SJ; Ventelä AM; Litmanen J; Anttila L
    Ecol Evol; 2022 Mar; 12(3):e8687. PubMed ID: 35342549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake.
    Tõnno I; Agasild H; Kõiv T; Freiberg R; Nõges P; Nõges T
    PLoS One; 2016; 11(4):e0154526. PubMed ID: 27124652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario.
    Urrutia-Cordero P; Ekvall MK; Hansson LA
    PLoS One; 2016; 11(4):e0153032. PubMed ID: 27043823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of potentially toxic cyanobacteria in crustacean zooplankton diet in a eutrophic lake.
    Agasild H; Panksep K; Tõnno I; Blank K; Kõiv T; Freiberg R; Laugaste R; Jones RI; Nõges P; Nõges T
    Harmful Algae; 2019 Nov; 89():101688. PubMed ID: 31672224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis.
    Persson KJ; Bergström K; Mazur-Marzec H; Legrand C
    Toxicon; 2013 Dec; 76():178-86. PubMed ID: 24018361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmful freshwater algal blooms, with an emphasis on cyanobacteria.
    Paerl HW; Fulton RS; Moisander PH; Dyble J
    ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecosystem consequences of cyanobacteria in the northern Baltic Sea.
    Karjalainen M; Engström-Ost J; Korpinen S; Peltonen H; Pääkkönen JP; Rönkkönen S; Suikkanen S; Viitasalo M
    Ambio; 2007 Apr; 36(2-3):195-202. PubMed ID: 17520934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix-dominated freshwater lakes.
    Janse I; Kardinaal WE; Agterveld MK; Meima M; Visser PM; Zwart G
    Environ Microbiol; 2005 Oct; 7(10):1514-24. PubMed ID: 16156725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is Toxin-Producing
    Fournier C; Riehle E; Dietrich DR; Schleheck D
    Toxins (Basel); 2021 Sep; 13(9):. PubMed ID: 34564670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake.
    Li H; Alsanea A; Barber M; Goel R
    Sci Total Environ; 2019 Apr; 661():465-480. PubMed ID: 30677691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical success of biomanipulation using filter-feeding Fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake.
    Xie P; Liu J
    ScientificWorldJournal; 2001 Aug; 1():337-56. PubMed ID: 12806072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation.
    Ekvall MK; Urrutia-Cordero P; Hansson LA
    PLoS One; 2014; 9(11):e112956. PubMed ID: 25409309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.