These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23129483)
1. High-level production of lactostatin, a hypocholesterolemic peptide, in transgenic rice using soybean A1aB1b as carrier. Cabanos C; Ekyo A; Amari Y; Kato N; Kuroda M; Nagaoka S; Takaiwa F; Utsumi S; Maruyama N Transgenic Res; 2013 Jun; 22(3):621-9. PubMed ID: 23129483 [TBL] [Abstract][Full Text] [Related]
2. The hypocholesterolemic activity of transgenic rice seed accumulating lactostatin, a bioactive peptide derived from bovine milk β-lactoglobulin. Wakasa Y; Tamakoshi C; Ohno T; Hirose S; Goto T; Nagaoka S; Takaiwa F J Agric Food Chem; 2011 Apr; 59(8):3845-50. PubMed ID: 21410288 [TBL] [Abstract][Full Text] [Related]
3. Co-expression of soybean glycinins A1aB1b and A3B4 enhances their accumulation levels in transgenic rice seed. Takaiwa F; Sakuta C; Choi SK; Tada Y; Motoyama T; Utsumi S Plant Cell Physiol; 2008 Oct; 49(10):1589-99. PubMed ID: 18776200 [TBL] [Abstract][Full Text] [Related]
4. {alpha}' Subunit of soybean {beta}-conglycinin forms complex with rice glutelin via a disulphide bond in transgenic rice seeds. Motoyama T; Maruyama N; Amari Y; Kobayashi K; Washida H; Higasa T; Takaiwa F; Utsumi S J Exp Bot; 2009; 60(14):4015-27. PubMed ID: 19656819 [TBL] [Abstract][Full Text] [Related]
5. Higher-level accumulation of foreign gene products in transgenic rice seeds by the callus-specific selection system. Wakasa Y; Ozawa K; Takaiwa F J Biosci Bioeng; 2009 Jan; 107(1):78-83. PubMed ID: 19147115 [TBL] [Abstract][Full Text] [Related]
6. Production of a bioactive peptide (IIAEK) in Escherichia coli using soybean proglycinin A1ab1b as a carrier. Prak K; Utsumi S J Agric Food Chem; 2009 May; 57(9):3792-9. PubMed ID: 19298043 [TBL] [Abstract][Full Text] [Related]
8. Development of a novel transgenic rice with hypocholesterolemic activity via high-level accumulation of the α' subunit of soybean β-conglycinin. Cabanos C; Kato N; Amari Y; Fujiwara K; Ohno T; Shimizu K; Goto T; Shimada M; Kuroda M; Masuda T; Takaiwa F; Utsumi S; Nagaoka S; Maruyama N Transgenic Res; 2014 Aug; 23(4):609-20. PubMed ID: 24676962 [TBL] [Abstract][Full Text] [Related]
9. Co-expression of alpha' and beta subunits of beta-conglycinin in rice seeds and its effect on the accumulation behavior of the expressed proteins. Motoyama T; Okumoto Y; Tanisaka T; Utsumi S; Maruyama N Transgenic Res; 2010 Oct; 19(5):819-27. PubMed ID: 20084547 [TBL] [Abstract][Full Text] [Related]
10. Design of genetically modified soybean proglycinin A1aB1b with multiple copies of bioactive peptide sequences. Prak K; Maruyama Y; Maruyama N; Utsumi S Peptides; 2006 Jun; 27(6):1179-86. PubMed ID: 16356590 [TBL] [Abstract][Full Text] [Related]
11. High accumulation of bioactive peptide in transgenic rice seeds by expression of introduced multiple genes. Wakasa Y; Yasuda H; Takaiwa F Plant Biotechnol J; 2006 Sep; 4(5):499-510. PubMed ID: 17309726 [TBL] [Abstract][Full Text] [Related]
12. Expression of functional recombinant human growth hormone in transgenic soybean seeds. Cunha NB; Murad AM; Cipriano TM; Araújo AC; Aragão FJ; Leite A; Vianna GR; McPhee TR; Souza GH; Waters MJ; Rech EL Transgenic Res; 2011 Aug; 20(4):811-26. PubMed ID: 21069461 [TBL] [Abstract][Full Text] [Related]
13. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. Montesinos L; Bundó M; Badosa E; San Segundo B; Coca M; Montesinos E BMC Plant Biol; 2017 Mar; 17(1):63. PubMed ID: 28292258 [TBL] [Abstract][Full Text] [Related]
14. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Cunha NB; Murad AM; Ramos GL; Maranhão AQ; Brígido MM; Araújo AC; Lacorte C; Aragão FJ; Covas DT; Fontes AM; Souza GH; Vianna GR; Rech EL Transgenic Res; 2011 Aug; 20(4):841-55. PubMed ID: 21069460 [TBL] [Abstract][Full Text] [Related]
15. Secretory type of recombinant thioredoxin h induces ER stress in endosperm cells of transgenic rice. Wakasa Y; Yasuda H; Takaiwa F J Plant Physiol; 2013 Jan; 170(2):202-10. PubMed ID: 23043988 [TBL] [Abstract][Full Text] [Related]
16. Antihypertensive activity of transgenic rice seed containing an 18-repeat novokinin peptide localized in the nucleolus of endosperm cells. Wakasa Y; Zhao H; Hirose S; Yamauchi D; Yamada Y; Yang L; Ohinata K; Yoshikawa M; Takaiwa F Plant Biotechnol J; 2011 Sep; 9(7):729-35. PubMed ID: 21078052 [TBL] [Abstract][Full Text] [Related]
17. Expression of hypoallergenic Der f 2 derivatives with altered intramolecular disulphide bonds induces the formation of novel ER-derived protein bodies in transgenic rice seeds. Yang L; Hirose S; Suzuki K; Hiroi T; Takaiwa F J Exp Bot; 2012 May; 63(8):2947-59. PubMed ID: 22378952 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of seed storage protein gene 3'-untranslated regions in enhancing gene expression in transgenic rice seed. Li WJ; Dai LL; Chai ZJ; Yin ZJ; Qu le Q Transgenic Res; 2012 Jun; 21(3):545-53. PubMed ID: 21912852 [TBL] [Abstract][Full Text] [Related]
19. Compensatory rebalancing of rice prolamins by production of recombinant prolamin/bioactive peptide fusion proteins within ER-derived protein bodies. Takaiwa F; Yang L; Wakasa Y; Ozawa K Plant Cell Rep; 2018 Feb; 37(2):209-223. PubMed ID: 29075848 [TBL] [Abstract][Full Text] [Related]
20. Improvement of production yield and extraction efficacy of recombinant protein by high endosperm-specific expression along with simultaneous suppression of major seed storage proteins. Takaiwa F; Wakasa Y; Ozawa K; Sekikawa K Plant Sci; 2021 Jan; 302():110692. PubMed ID: 33288006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]