These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 23130549)
21. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Sekhar K; Priyanka B; Reddy VD; Rao KV Plant Cell Environ; 2010 Aug; 33(8):1324-38. PubMed ID: 20374537 [TBL] [Abstract][Full Text] [Related]
22. Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.). Huerta-Ocampo JA; León-Galván MF; Ortega-Cruz LB; Barrera-Pacheco A; De León-Rodríguez A; Mendoza-Hernández G; de la Rosa AP Plant Biol (Stuttg); 2011 May; 13(3):472-82. PubMed ID: 21489098 [TBL] [Abstract][Full Text] [Related]
23. Effects of AOX1a deficiency on plant growth, gene expression of respiratory components and metabolic profile under low-nitrogen stress in Arabidopsis thaliana. Watanabe CK; Hachiya T; Takahara K; Kawai-Yamada M; Uchimiya H; Uesono Y; Terashima I; Noguchi K Plant Cell Physiol; 2010 May; 51(5):810-22. PubMed ID: 20304787 [TBL] [Abstract][Full Text] [Related]
24. Identification of quantitative trait loci controlling high Calcium response in Arabidopsis thaliana. Li W; Duan H; Chen F; Wang Z; Huang X; Deng X; Liu Y PLoS One; 2014; 9(11):e112511. PubMed ID: 25401959 [TBL] [Abstract][Full Text] [Related]
25. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Bray EA J Exp Bot; 2004 Nov; 55(407):2331-41. PubMed ID: 15448178 [TBL] [Abstract][Full Text] [Related]
26. Proline Coordination with Fatty Acid Synthesis and Redox Metabolism of Chloroplast and Mitochondria. Shinde S; Villamor JG; Lin W; Sharma S; Verslues PE Plant Physiol; 2016 Oct; 172(2):1074-1088. PubMed ID: 27512016 [TBL] [Abstract][Full Text] [Related]
27. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Kesari R; Lasky JR; Villamor JG; Des Marais DL; Chen YJ; Liu TW; Lin W; Juenger TE; Verslues PE Proc Natl Acad Sci U S A; 2012 Jun; 109(23):9197-202. PubMed ID: 22615385 [TBL] [Abstract][Full Text] [Related]
28. Natural Root Cellular Variation in Responses to Osmotic Stress in Cajero-Sanchez W; Aceves-Garcia P; Fernández-Marcos M; Gutiérrez C; Rosas U; García-Ponce B; Álvarez-Buylla ER; Sánchez MP; Garay-Arroyo A Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31795411 [No Abstract] [Full Text] [Related]
29. Modulation of Energy Metabolism Is Important for Low-Oxygen Stress Adaptation in Brassicaceae Species. Hwang JH; Yu SI; Lee BH; Lee DH Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150906 [TBL] [Abstract][Full Text] [Related]
31. Transcriptomes of Eight Arabidopsis thaliana Accessions Reveal Core Conserved, Genotype- and Organ-Specific Responses to Flooding Stress. van Veen H; Vashisht D; Akman M; Girke T; Mustroph A; Reinen E; Hartman S; Kooiker M; van Tienderen P; Schranz ME; Bailey-Serres J; Voesenek LA; Sasidharan R Plant Physiol; 2016 Oct; 172(2):668-689. PubMed ID: 27208254 [TBL] [Abstract][Full Text] [Related]
32. Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture. Clauw P; Coppens F; Korte A; Herman D; Slabbinck B; Dhondt S; Van Daele T; De Milde L; Vermeersch M; Maleux K; Maere S; Gonzalez N; Inzé D Plant Cell; 2016 Oct; 28(10):2417-2434. PubMed ID: 27729396 [TBL] [Abstract][Full Text] [Related]
33. [Arabidopsis thaliana accessions - a tool for biochemical and phylogentical studies]. Szymańska R; Gabruk M; Kruk J Postepy Biochem; 2015; 61(1):102-13. PubMed ID: 26281359 [TBL] [Abstract][Full Text] [Related]
34. Transcriptomic and physiological variations of three Arabidopsis ecotypes in response to salt stress. Wang Y; Yang L; Zheng Z; Grumet R; Loescher W; Zhu JK; Yang P; Hu Y; Chan Z PLoS One; 2013; 8(7):e69036. PubMed ID: 23894403 [TBL] [Abstract][Full Text] [Related]
35. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature. Alcázar R; von Reth M; Bautor J; Chae E; Weigel D; Koornneef M; Parker JE PLoS Genet; 2014 Dec; 10(12):e1004848. PubMed ID: 25503786 [TBL] [Abstract][Full Text] [Related]
36. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions. Szymańska R; Nowicka B; Gabruk M; Glińska S; Michlewska S; Dłużewska J; Sawicka A; Kruk J; Laitinen R Physiol Plant; 2015 Jun; 154(2):194-209. PubMed ID: 25214438 [TBL] [Abstract][Full Text] [Related]
37. The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Lehmann M; Schwarzländer M; Obata T; Sirikantaramas S; Burow M; Olsen CE; Tohge T; Fricker MD; Møller BL; Fernie AR; Sweetlove LJ; Laxa M Mol Plant; 2009 May; 2(3):390-406. PubMed ID: 19825624 [TBL] [Abstract][Full Text] [Related]
38. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Sharma S; Villamor JG; Verslues PE Plant Physiol; 2011 Sep; 157(1):292-304. PubMed ID: 21791601 [TBL] [Abstract][Full Text] [Related]