These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23130570)

  • 1. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors.
    Lu R; Christianson C; Kirkeminde A; Ren S; Wu J
    Nano Lett; 2012 Dec; 12(12):6244-9. PubMed ID: 23130570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency.
    Gong Y; Liu Q; Wilt JS; Gong M; Ren S; Wu J
    Sci Rep; 2015 Jun; 5():11328. PubMed ID: 26066737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing the Interface of Carbon Nanotube/Biomaterials for High-Performance Ultra-Broadband Photodetection.
    Gong Y; Adhikari P; Liu Q; Wang T; Gong M; Chan WL; Ching WY; Wu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11016-11024. PubMed ID: 28263551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-walled carbon nanotube thermopile for broadband light detection.
    St-Antoine BC; Ménard D; Martel R
    Nano Lett; 2011 Feb; 11(2):609-13. PubMed ID: 21189022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers.
    Jain RM; Howden R; Tvrdy K; Shimizu S; Hilmer AJ; McNicholas TP; Gleason KK; Strano MS
    Adv Mater; 2012 Aug; 24(32):4436-9. PubMed ID: 22740144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films.
    Bindl DJ; Wu MY; Prehn FC; Arnold MS
    Nano Lett; 2011 Feb; 11(2):455-60. PubMed ID: 21166422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High photoresponse in hybrid graphene-carbon nanotube infrared detectors.
    Lu R; Christianson C; Weintrub B; Wu JZ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11703-7. PubMed ID: 24164551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors.
    Arnold MS; Zimmerman JD; Renshaw CK; Xu X; Lunt RR; Austin CM; Forrest SR
    Nano Lett; 2009 Sep; 9(9):3354-8. PubMed ID: 19637853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced electromodulation of infrared transmittance in semitransparent films of large diameter semiconducting single-walled carbon nanotubes.
    Wang F; Itkis ME; Haddon RC
    Nano Lett; 2010 Mar; 10(3):937-42. PubMed ID: 20121064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices.
    Engel M; Steiner M; Sundaram RS; Krupke R; Green AA; Hersam MC; Avouris P
    ACS Nano; 2012 Aug; 6(8):7303-10. PubMed ID: 22769018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of hole transfer from semiconducting polymer to carbon nanotubes.
    Lan F; Li G
    Nano Lett; 2013 May; 13(5):2086-91. PubMed ID: 23574570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.
    Dowgiallo AM; Mistry KS; Johnson JC; Reid OG; Blackburn JL
    J Phys Chem Lett; 2016 May; 7(10):1794-9. PubMed ID: 27127916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.
    Theocharous E; Engtrakul C; Dillon AC; Lehman J
    Appl Opt; 2008 Aug; 47(22):3999-4003. PubMed ID: 18670553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floating electrode transistor based on purified semiconducting carbon nanotubes for high source-drain voltage operation.
    Lee J; Lee H; Kim T; Jin HJ; Shin J; Shin Y; Park S; Khang Y; Hong S
    Nanotechnology; 2012 Mar; 23(8):085204. PubMed ID: 22293578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
    Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C
    ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction.
    Long R; Prezhdo OV
    Nano Lett; 2014 Jun; 14(6):3335-41. PubMed ID: 24841921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoresonant signal boosters for carbon nanotube based infrared detectors.
    Fung CK; Xi N; Shanker B; Lai KW
    Nanotechnology; 2009 May; 20(18):185201. PubMed ID: 19420605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications.
    Boghossian AA; Zhang J; Barone PW; Reuel NF; Kim JH; Heller DA; Ahn JH; Hilmer AJ; Rwei A; Arkalgud JR; Zhang CT; Strano MS
    ChemSusChem; 2011 Jul; 4(7):848-63. PubMed ID: 21751417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.