These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23130631)

  • 1. Controlling a nanowire quantum dot band gap using a straining dielectric envelope.
    Bouwes Bavinck M; Zieliński M; Witek BJ; Zehender T; Bakkers EP; Zwiller V
    Nano Lett; 2012 Dec; 12(12):6206-11. PubMed ID: 23130631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.
    Haffouz S; Zeuner KD; Dalacu D; Poole PJ; Lapointe J; Poitras D; Mnaymneh K; Wu X; Couillard M; Korkusinski M; Schöll E; Jöns KD; Zwiller V; Williams RL
    Nano Lett; 2018 May; 18(5):3047-3052. PubMed ID: 29616557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InAsP Quantum Dot-Embedded InP Nanowires toward Silicon Photonic Applications.
    Chang TY; Kim H; Hubbard WA; Azizur-Rahman KM; Ju JJ; Kim JH; Lee WJ; Huffaker D
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12488-12494. PubMed ID: 35175722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale.
    Zhang G; Tateno K; Sogawa T; Gotoh H
    Nanotechnology; 2018 Apr; 29(15):155202. PubMed ID: 29376842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates.
    Ren D; Farrell AC; Williams BS; Huffaker DL
    Nanoscale; 2017 Jun; 9(24):8220-8228. PubMed ID: 28580981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires.
    Anufriev R; Barakat JB; Patriarche G; Letartre X; Bru-Chevallier C; Harmand JC; Gendry M; Chauvin N
    Nanotechnology; 2015 Oct; 26(39):395701. PubMed ID: 26349621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlated Electro-Optical and Structural Study of Electrically Tunable Nanowire Quantum Dot Emitters.
    Spies M; Ajay A; Monroy E; Gayral B; den Hertog MI
    Nano Lett; 2020 Jan; 20(1):314-319. PubMed ID: 31851824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium.
    Tian Z; Yuan X; Zhang Z; Jia W; Zhou J; Huang H; Meng J; He J; Du Y
    Nanoscale Res Lett; 2021 Mar; 16(1):49. PubMed ID: 33743092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanowire Quantum Dots Tuned to Atomic Resonances.
    Leandro L; Gunnarsson CP; Reznik R; Jöns KD; Shtrom I; Khrebtov A; Kasama T; Zwiller V; Cirlin G; Akopian N
    Nano Lett; 2018 Nov; 18(11):7217-7221. PubMed ID: 30336054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors.
    Karimi M; Jain V; Heurlin M; Nowzari A; Hussain L; Lindgren D; Stehr JE; Buyanova IA; Gustafsson A; Samuelson L; Borgström MT; Pettersson H
    Nano Lett; 2017 Jun; 17(6):3356-3362. PubMed ID: 28535059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires.
    Dalacu D; Mnaymneh K; Lapointe J; Wu X; Poole PJ; Bulgarini G; Zwiller V; Reimer ME
    Nano Lett; 2012 Nov; 12(11):5919-23. PubMed ID: 23066839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of strain-dependent optical absorption in a doped self-assembled InAs/InGaAs/GaAs/AlGaAs quantum dot.
    Ameen TA; Ilatikhameneh H; Tankasala A; Hsueh Y; Charles J; Fonseca J; Povolotskyi M; Kim JO; Krishna S; Allen MS; Allen JW; Rahman R; Klimeck G
    Beilstein J Nanotechnol; 2018; 9():1075-1084. PubMed ID: 29719758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots.
    Francaviglia L; Giunto A; Kim W; Romero-Gomez P; Vukajlovic-Plestina J; Friedl M; Potts H; Güniat L; Tütüncüoglu G; Fontcuberta I Morral A
    Nano Lett; 2018 Apr; 18(4):2393-2401. PubMed ID: 29578722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures.
    Tateno K; Zhang G; Gotoh H; Sogawa T
    Nano Lett; 2012 Jun; 12(6):2888-93. PubMed ID: 22594554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-controlled growth of vertical InP nanowires on Si(111) substrates.
    Jaffal A; Regreny P; Patriarche G; Chauvin N; Gendry M
    Nanotechnology; 2020 Aug; 31(35):354003. PubMed ID: 32428880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of rotationally twinned InP nanowire heterostructures.
    Bao J; Bell DC; Capasso F; Wagner JB; Mårtensson T; Trägårdh J; Samuelson L
    Nano Lett; 2008 Mar; 8(3):836-41. PubMed ID: 18275163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature.
    Zhang G; Takiguchi M; Tateno K; Tawara T; Notomi M; Gotoh H
    Sci Adv; 2019 Feb; 5(2):eaat8896. PubMed ID: 30801006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot.
    Bouwes Bavinck M; Jöns KD; Zieliński M; Patriarche G; Harmand JC; Akopian N; Zwiller V
    Nano Lett; 2016 Feb; 16(2):1081-5. PubMed ID: 26806321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain and bandwidth of InP nanowire array photodetectors with embedded photogated InAsP quantum discs.
    Jeddi H; Karimi M; Witzigmann B; Zeng X; Hrachowina L; Borgström MT; Pettersson H
    Nanoscale; 2021 Mar; 13(12):6227-6233. PubMed ID: 33885608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.