These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23130847)

  • 1. Volatilization modeling of two herbicides from soil in a wind tunnel experiment under varying humidity conditions.
    Schneider M; Goss KU
    Environ Sci Technol; 2012 Nov; 46(22):12527-33. PubMed ID: 23130847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatilization of pesticides from the bare soil surface: evaluation of the humidity effect.
    Schneider M; Endo S; Goss KU
    J Environ Qual; 2013; 42(3):844-51. PubMed ID: 23673952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling pesticide volatilization: testing the additional effect of gaseous adsorption on soil solid surfaces.
    Garcia L; Bedos C; Génermont S; Benoit P; Barriuso E; Cellier P
    Environ Sci Technol; 2014 May; 48(9):4991-8. PubMed ID: 24702253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL; Hageman KJ; Chin YP
    Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring herbicide volatilization from bare soil.
    Yates SR
    Environ Sci Technol; 2006 May; 40(10):3223-8. PubMed ID: 16749685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental fate of trifluralin.
    Grover R; Wolt JD; Cessna AJ; Schiefer HB
    Rev Environ Contam Toxicol; 1997; 153():1-64. PubMed ID: 9380893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatilisation of triallate as affected by soil texture and air velocity.
    Atienza J; Tabernero MT; Alvarez-Benedí J; Sanz M
    Chemosphere; 2001 Jan; 42(3):257-61. PubMed ID: 11100925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation.
    Bedos C; Rousseau-Djabri MF; Gabrielle B; Flura D; Durand B; Barriuso E; Cellier P
    Environ Pollut; 2006 Dec; 144(3):958-66. PubMed ID: 16563584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.
    Cooke CM; Shaw G; Collins CD
    Environ Pollut; 2004 Dec; 132(3):541-52. PubMed ID: 15325470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia.
    Hiller E; Krascsenits Z; Cernanský S
    Bull Environ Contam Toxicol; 2008 May; 80(5):412-6. PubMed ID: 18401535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new tool for laboratory studies on volatilization: extension of applicability of the photovolatility chamber.
    Wolters A; Kromer T; Linnemann V; Schäffer A; Vereecken H
    Environ Toxicol Chem; 2003 Apr; 22(4):791-7. PubMed ID: 12685714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.
    Garcia L; Bedos C; Génermont S; Braud I; Cellier P
    Sci Total Environ; 2011 Sep; 409(19):3980-92. PubMed ID: 21700320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil moisture and metolachlor volatilization observations over three years.
    Gish TJ; Prueger JH; Kustas WP; Daughtry CS; McKee LG; Russ A; Hatfield JL
    J Environ Qual; 2009; 38(5):1785-95. PubMed ID: 19643743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrazine sorption and fate in a Ultisol from humid tropical Brazil.
    Correia FV; Macrae A; Guilherme LR; Langenbach T
    Chemosphere; 2007 Mar; 67(5):847-54. PubMed ID: 17223180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils.
    Boivin A; Cherrier R; Schiavon M
    Chemosphere; 2005 Nov; 61(5):668-76. PubMed ID: 16219503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of sugar cane vinasse on the sorption and degradation of herbicides in soil under controlled conditions.
    Lourencetti C; De Marchi MR; Ribeiro ML
    J Environ Sci Health B; 2012; 47(10):949-58. PubMed ID: 22938579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating herbicide volatilization from bare soil affected by atmospheric conditions and limited solubility in water.
    Yates SR
    Environ Sci Technol; 2006 Nov; 40(22):6963-8. PubMed ID: 17154002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of pesticide volatilization with PELMO 3.31.
    Ferrari F; Klein M; Capri E; Trevisan M
    Chemosphere; 2005 Jul; 60(5):705-13. PubMed ID: 15963809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved description of pesticide volatilization: refinement of the pesticide leaching model (PELMO).
    Wolters A; Klein M; Vereecken H
    J Environ Qual; 2004; 33(5):1629-37. PubMed ID: 15356222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and desorption variability of four herbicides used in paddy rice production.
    Alister CA; Araya MA; Kogan M
    J Environ Sci Health B; 2011; 46(1):62-8. PubMed ID: 21191865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.