BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23130886)

  • 1. Same temporal niche, opposite rhythmicity: two closely related bioluminescent insects with opposite bioluminesce propensity rhythms.
    Merritt DJ; Rodgers EM; Amir AF; Clarke AK
    Chronobiol Int; 2012 Dec; 29(10):1336-44. PubMed ID: 23130886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (Glowworms).
    Merritt DJ; Clarke AK
    J Biol Rhythms; 2011 Feb; 26(1):34-43. PubMed ID: 21252364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeostatic and circadian mechanisms of bioluminescence regulation differ between a forest and a facultative cave species of glowworm, Arachnocampa.
    Berry SE; Gilchrist J; Merritt DJ
    J Insect Physiol; 2017 Nov; 103():1-9. PubMed ID: 28899751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian regulation of bioluminescence in the prey-luring glowworm, Arachnocampa flava.
    Merritt DJ; Aotani S
    J Biol Rhythms; 2008 Aug; 23(4):319-29. PubMed ID: 18663239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization of circadian bioluminescence as a group-foraging strategy in cave glowworms.
    Maynard AJ; Merritt DJ
    Integr Comp Biol; 2013 Jul; 53(1):154-64. PubMed ID: 23575257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana.
    Sharma S; Thakurdas P; Sinam B; Joshi D
    Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina.
    Thakurdas P; Sharma S; Singh B; Vanlalhriatpuia K; Joshi D
    Chronobiol Int; 2011 May; 28(5):390-6. PubMed ID: 21721854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat.
    Schwimmer H; Mursu N; Haim A
    Chronobiol Int; 2010 Aug; 27(7):1401-19. PubMed ID: 20795883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variation of temporal niche in wild owl monkeys (Aotus azarai azarai) of the Argentinean Chaco: a matter of masking?
    Erkert HG; Fernandez-Duque E; Rotundo M; Scheideler A
    Chronobiol Int; 2012 Jul; 29(6):702-14. PubMed ID: 22734571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus.
    Shuboni DD; Cramm S; Yan L; Nunez AA; Smale L
    J Biol Rhythms; 2012 Aug; 27(4):299-307. PubMed ID: 22855574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava.
    Mills R; Popple JA; Veidt M; Merritt DJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Apr; 202(4):313-27. PubMed ID: 26897608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of biogenic amines in regulating bioluminescence in the Australian glowworm Arachnocampa flava.
    Rigby LM; Merritt DJ
    J Exp Biol; 2011 Oct; 214(Pt 19):3286-93. PubMed ID: 21900476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm.
    Willis RE; White CR; Merritt DJ
    J Comp Physiol B; 2011 May; 181(4):477-86. PubMed ID: 21136265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase and period responses of the jerboa Jaculus orientalis to short light pulses.
    El Moussaouiti R; Bouhaddou N; Sabbar M; Cooper HM; Lakhdar-Ghazal N
    Chronobiol Int; 2010 Aug; 27(7):1348-64. PubMed ID: 20795880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two steady-entrainment phases and graded masking effects by light generate different circadian chronotypes in Octodon degus.
    Vivanco P; Rol MA; Madrid JA
    Chronobiol Int; 2009 Feb; 26(2):219-41. PubMed ID: 19212838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily and circadian melatonin release in vitro by the pineal organ of two nocturnal teleost species: Senegal sole (Solea senegalensis) and tench (Tinca tinca).
    Oliveira C; Garcia EM; López-Olmeda JF; Sánchez-Vázquez FJ
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jul; 153(3):297-302. PubMed ID: 19272458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae).
    Baker CH; Graham GC; Scott KD; Cameron SL; Yeates DK; Merritt DJ
    Mol Phylogenet Evol; 2008 Aug; 48(2):506-14. PubMed ID: 18583158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pacemaker phase control versus masking by light: setting the circadian chronotype in dual Octodon degus.
    Vivanco P; Rol MA; Madrid JA
    Chronobiol Int; 2010 Aug; 27(7):1365-79. PubMed ID: 20795881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.