These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23131040)

  • 21. Mechanism of fast pyrolysis of lignin: studying model compounds.
    Custodis VB; Hemberger P; Ma Z; van Bokhoven JA
    J Phys Chem B; 2014 Jul; 118(29):8524-31. PubMed ID: 24937704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and pyrolysis characteristics of lignin derived from wood powder hydrolysis residues.
    Zhang B; Yin X; Wu C; Qiu Z; Wang C; Huang Y; Ma L; Wu S
    Appl Biochem Biotechnol; 2012 Sep; 168(1):37-46. PubMed ID: 21603951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water.
    Fang Z; Sato T; Smith RL; Inomata H; Arai K; Kozinski JA
    Bioresour Technol; 2008 Jun; 99(9):3424-30. PubMed ID: 17881227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal behavior of beta-1 subunits in lignin: pyrolysis of 1,2-diarylpropane-1,3-diol-type lignin model compounds.
    Kuroda K; Ashitani T; Fujita K; Hattori T
    J Agric Food Chem; 2007 Apr; 55(8):2770-8. PubMed ID: 17385881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS.
    Schnitzer MI; Monreal CM; Jandl G
    J Environ Sci Health B; 2008 Jan; 43(1):81-95. PubMed ID: 18161578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components.
    Kibet JK; Khachatryan L; Dellinger B
    Chemosphere; 2015 Nov; 138():259-65. PubMed ID: 26091866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the fast pyrolysis of lignin.
    Patwardhan PR; Brown RC; Shanks BH
    ChemSusChem; 2011 Nov; 4(11):1629-36. PubMed ID: 21948630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.
    Zhang H; Xiao R; Wang D; He G; Shao S; Zhang J; Zhong Z
    Bioresour Technol; 2011 Mar; 102(5):4258-64. PubMed ID: 21232946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.
    Melligan F; Dussan K; Auccaise R; Novotny EH; Leahy JJ; Hayes MH; Kwapinski W
    Bioresour Technol; 2012 Mar; 108():258-63. PubMed ID: 22281143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental study on light volatile products from thermal decomposition of lignin monomer model compounds: effect of temperature, residence time and methoxyl group.
    Yang H; Jiang J; Zhang B; Xu P
    RSC Adv; 2021 Nov; 11(59):37067-37082. PubMed ID: 35496408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative coupling during lignin polymerization is determined by unpaired electron delocalization within parent phenylpropanoid radicals.
    Russell WR; Forrester AR; Chesson A; Burkitt MJ
    Arch Biochem Biophys; 1996 Aug; 332(2):357-66. PubMed ID: 8806746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Consumption of water-insoluble phenolic products of lignin pyrolysis by the strain Penicillium tardum H-2].
    Karetnikova EA
    Prikl Biokhim Mikrobiol; 2006; 42(1):55-8. PubMed ID: 16521577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation.
    Zhang H; Wang Y; Shao S; Xiao R
    Sci Rep; 2016 Nov; 6():37513. PubMed ID: 27869228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.
    Mante OD; Rodriguez JA; Babu SP
    Bioresour Technol; 2013 Nov; 148():508-16. PubMed ID: 24080289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T
    Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Degradation of phenols formed during lignin pyrolysis by microfungi of genera Trichoderma and Penicillium].
    Karetnikova EA; Zhirkova AD
    Izv Akad Nauk Ser Biol; 2005; (5):539-44. PubMed ID: 16240749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative study of the pyrolysis of lignocellulose and its major components: characterization and overall distribution of their biochars and volatiles.
    Cao X; Zhong L; Peng X; Sun S; Li S; Liu S; Sun R
    Bioresour Technol; 2014 Mar; 155():21-7. PubMed ID: 24413478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.
    Mu W; Ben H; Du X; Zhang X; Hu F; Liu W; Ragauskas AJ; Deng Y
    Bioresour Technol; 2014 Dec; 173():6-10. PubMed ID: 25280108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.