BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23131163)

  • 1. Activin and TGF-β effects on brain development and neural stem cells.
    Rodríguez-Martínez G; Velasco I
    CNS Neurol Disord Drug Targets; 2012 Nov; 11(7):844-55. PubMed ID: 23131163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-beta- and Activin-Smad signaling pathways are activated at distinct maturation stages of the thymopoeisis.
    Rosendahl A; Speletas M; Leandersson K; Ivars F; Sideras P
    Int Immunol; 2003 Dec; 15(12):1401-14. PubMed ID: 14645149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury.
    Logan TT; Villapol S; Symes AJ
    PLoS One; 2013; 8(3):e59250. PubMed ID: 23555640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-β family co-receptor function and signaling.
    Nickel J; Ten Dijke P; Mueller TD
    Acta Biochim Biophys Sin (Shanghai); 2018 Jan; 50(1):12-36. PubMed ID: 29293886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A road map toward defining the role of Smad signaling in hematopoietic stem cells.
    Utsugisawa T; Moody JL; Aspling M; Nilsson E; Carlsson L; Karlsson S
    Stem Cells; 2006 Apr; 24(4):1128-36. PubMed ID: 16357343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activins as Dual Specificity TGF-β Family Molecules: SMAD-Activation via Activin- and BMP-Type 1 Receptors.
    Olsen OE; Hella H; Elsaadi S; Jacobi C; Martinez-Hackert E; Holien T
    Biomolecules; 2020 Mar; 10(4):. PubMed ID: 32235336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging roles for TGF-beta1 in nervous system development.
    Gomes FC; Sousa Vde O; Romão L
    Int J Dev Neurosci; 2005 Aug; 23(5):413-24. PubMed ID: 15936920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of transforming growth factor-beta1, activin A, and their receptors in thyroid follicle cells: negative regulation of thyrocyte growth and function.
    Franzén A; Piek E; Westermark B; ten Dijke P; Heldin NE
    Endocrinology; 1999 Sep; 140(9):4300-10. PubMed ID: 10465304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autocrine transforming growth factor-β/activin A-Smad signaling induces hepatic progenitor cells undergoing partial epithelial-mesenchymal transition states.
    Wu Y; Ding ZY; Jin GN; Xiong YX; Yu B; Sun YM; Wang W; Liang HF; Zhang B; Chen XP
    Biochimie; 2018 May; 148():87-98. PubMed ID: 29544731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocrine Regulation of Energy Balance by Drosophila TGF-β/Activins.
    Song W; Ghosh AC; Cheng D; Perrimon N
    Bioessays; 2018 Nov; 40(11):e1800044. PubMed ID: 30264417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development.
    Stipursky J; Gomes FC
    Glia; 2007 Aug; 55(10):1023-33. PubMed ID: 17549683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses.
    Krieglstein K; Zheng F; Unsicker K; Alzheimer C
    Trends Neurosci; 2011 Aug; 34(8):421-9. PubMed ID: 21742388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions.
    Thompson TB; Woodruff TK; Jardetzky TS
    EMBO J; 2003 Apr; 22(7):1555-66. PubMed ID: 12660162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of the TGF-βs and their receptors - insights into evolution of the TGF-β superfamily.
    Hinck AP
    FEBS Lett; 2012 Jul; 586(14):1860-70. PubMed ID: 22651914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracrine signaling mechanisms of activin A and TGF-β.
    Gressner OA
    Vitam Horm; 2011; 85():59-77. PubMed ID: 21353876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and expression of Smads associated with TGF-β/activin/nodal signaling pathways in the rainbow trout (Oncorhynchus mykiss).
    Gahr SA; Weber GM; Rexroad CE
    Fish Physiol Biochem; 2012 Oct; 38(5):1233-44. PubMed ID: 22290475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β.
    Ungefroren H; Hyder A; Hinz H; Groth S; Lange H; El-Sayed KM; Ehnert S; Nüssler AK; Fändrich F; Gieseler F
    PLoS One; 2015; 10(2):e0118097. PubMed ID: 25707005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural basis of TGF-beta, bone morphogenetic protein, and activin ligand binding.
    Lin SJ; Lerch TF; Cook RW; Jardetzky TS; Woodruff TK
    Reproduction; 2006 Aug; 132(2):179-90. PubMed ID: 16885528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor-beta1 and activin A generate antiproliferative signaling in thyroid cancer cells.
    Matsuo SE; Leoni SG; Colquhoun A; Kimura ET
    J Endocrinol; 2006 Jul; 190(1):141-50. PubMed ID: 16837618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-{beta}1 activates two distinct type I receptors in neurons: implications for neuronal NF-{kappa}B signaling.
    König HG; Kögel D; Rami A; Prehn JH
    J Cell Biol; 2005 Mar; 168(7):1077-86. PubMed ID: 15781474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.