BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23131532)

  • 1. Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells.
    Chang CW; Hwang Y; Brafman D; Hagan T; Phung C; Varghese S
    Biomaterials; 2013 Jan; 34(4):912-21. PubMed ID: 23131532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells.
    Liu L; Kamei KI; Yoshioka M; Nakajima M; Li J; Fujimoto N; Terada S; Tokunaga Y; Koyama Y; Sato H; Hasegawa K; Nakatsuji N; Chen Y
    Biomaterials; 2017 Apr; 124():47-54. PubMed ID: 28187394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment.
    Price AJ; Huang EY; Sebastiano V; Dunn AR
    Biomaterials; 2017 Mar; 121():179-192. PubMed ID: 28088685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces.
    Brafman DA; Chang CW; Fernandez A; Willert K; Varghese S; Chien S
    Biomaterials; 2010 Dec; 31(34):9135-44. PubMed ID: 20817292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clump-passaging-based efficient 3D culture of human pluripotent stem cells under chemically defined conditions.
    Lee MO; Jeon H; Son MY; Lee SC; Cho YS
    Biochem Biophys Res Commun; 2017 Nov; 493(1):723-730. PubMed ID: 28859981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells.
    Kanninen LK; Harjumäki R; Peltoniemi P; Bogacheva MS; Salmi T; Porola P; Niklander J; Smutný T; Urtti A; Yliperttula ML; Lou YR
    Biomaterials; 2016 Oct; 103():86-100. PubMed ID: 27372423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions.
    Park HJ; Yang K; Kim MJ; Jang J; Lee M; Kim DW; Lee H; Cho SW
    Biomaterials; 2015 May; 50():127-39. PubMed ID: 25736503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional biomaterials for the study of human pluripotent stem cells.
    Kraehenbuehl TP; Langer R; Ferreira LS
    Nat Methods; 2011 Aug; 8(9):731-6. PubMed ID: 21878920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices.
    Wachiralarpphaithoon C; Iwasaki Y; Akiyoshi K
    Biomaterials; 2007 Feb; 28(6):984-93. PubMed ID: 17107708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions.
    Zhou P; Wu F; Zhou T; Cai X; Zhang S; Zhang X; Li Q; Li Y; Zheng Y; Wang M; Lan F; Pan G; Pei D; Wei S
    Biomaterials; 2016 May; 87():1-17. PubMed ID: 26897536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a simple, repeatable, and cost-effective extracellular matrix for long-term xeno-free and feeder-free self-renewal of human pluripotent stem cells.
    Pakzad M; Ashtiani MK; Mousavi-Gargari SL; Baharvand H
    Histochem Cell Biol; 2013 Dec; 140(6):635-48. PubMed ID: 24065274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.
    Lei Y; Schaffer DV
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):E5039-48. PubMed ID: 24248365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered peptide modified hydrogel platform for propagation of human pluripotent stem cells.
    Richardson T; Wiegand C; Adisa F; Ravikumar K; Candiello J; Kumta P; Banerjee I
    Acta Biomater; 2020 Sep; 113():228-239. PubMed ID: 32603868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-instructive starPEG-heparin-collagen composite matrices.
    Binner M; Bray LJ; Friedrichs J; Freudenberg U; Tsurkan MV; Werner C
    Acta Biomater; 2017 Apr; 53():70-80. PubMed ID: 28216298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells.
    Wu S; Johansson J; Damdimopoulou P; Shahsavani M; Falk A; Hovatta O; Rising A
    Biomaterials; 2014 Oct; 35(30):8496-502. PubMed ID: 25043502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term culture of pluripotent stem-cell-derived human neurons on diamond--A substrate for neurodegeneration research and therapy.
    Nistor PA; May PW; Tamagnini F; Randall AD; Caldwell MA
    Biomaterials; 2015 Aug; 61():139-49. PubMed ID: 26002787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic ECM: Bioactive Synthetic Hydrogels for 3D Tissue Engineering.
    Unal AZ; West JL
    Bioconjug Chem; 2020 Oct; 31(10):2253-2271. PubMed ID: 32786365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings.
    Villa-Diaz LG; Ross AM; Lahann J; Krebsbach PH
    Stem Cells; 2013 Jan; 31(1):1-7. PubMed ID: 23081828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanobiology: a new frontier for human pluripotent stem cells.
    Sun Y; Fu J
    Integr Biol (Camb); 2013 Mar; 5(3):450-7. PubMed ID: 23337973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties.
    Jun I; Lee YB; Choi YS; Engler AJ; Park H; Shin H
    Biomaterials; 2015 Jun; 54():44-54. PubMed ID: 25907038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.