These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23131622)

  • 1. Synergism of Pseudomonas aeruginosa and Fe0 for treatment of heavy metal contaminated effluents using small scale laboratory reactor.
    Singh R; Bishnoi NR; Kirrolia A; Kumar R
    Bioresour Technol; 2013 Jan; 127():49-58. PubMed ID: 23131622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Pseudomonas aeruginosa an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology.
    Singh R; Bishnoi NR; Kirrolia A
    Bioresour Technol; 2013 Jun; 138():222-34. PubMed ID: 23612183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of free cells of Pseudomonas aeruginosa on textile dye degradation.
    Selvakumar KV; Basha CA; Prabhu HJ; Kalaichelvi P; Nelliyan S
    Bioresour Technol; 2010 Apr; 101(8):2678-84. PubMed ID: 19939668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study.
    Singh R; Kumar A; Kirrolia A; Kumar R; Yadav N; Bishnoi NR; Lohchab RK
    Bioresour Technol; 2011 Jan; 102(2):677-82. PubMed ID: 20884204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.
    Ibrahim WM; Mutawie HH
    Toxicol Ind Health; 2013 Feb; 29(1):38-42. PubMed ID: 22661401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent.
    Jadhav JP; Kalyani DC; Telke AA; Phugare SS; Govindwar SP
    Bioresour Technol; 2010 Jan; 101(1):165-73. PubMed ID: 19720521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of kinetic parameters in the biosorption of Cr (VI) on immobilized Bacillus cereus M(1)(16) in a continuous packed bed column reactor.
    Maiti SK; Bera D; Chattopadhyay P; Ray L
    Appl Biochem Biotechnol; 2009 Nov; 159(2):488-504. PubMed ID: 19333567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a membrane bioreactor used for the treatment of wastewater contaminated with heavy metals.
    Katsou E; Malamis S; Loizidou M
    Bioresour Technol; 2011 Mar; 102(6):4325-32. PubMed ID: 21269823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa.
    Manal MA; El-Naggar S; El-Aasar A; Barakat Khlood I
    Water Res; 2005 Dec; 39(20):5045-54. PubMed ID: 16316674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge.
    Gonzalez-Silva BM; Briones-Gallardo R; Razo-Flores E; Celis LB
    J Hazard Mater; 2009 Dec; 172(1):400-7. PubMed ID: 19695775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential treatment alternative for laboratory effluents.
    Alves LC; Henrique HM; Xavier AM; Cammarota MC
    Bioresour Technol; 2005 Oct; 96(15):1650-7. PubMed ID: 16023567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria.
    Micheletti E; Colica G; Viti C; Tamagnini P; De Philippis R
    J Appl Microbiol; 2008 Jul; 105(1):88-94. PubMed ID: 18248368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.
    Zakaria ZA; Zakaria Z; Surif S; Ahmad WA
    J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents.
    Pandey PK; Verma Y; Choubey S; Pandey M; Chandrasekhar K
    Bioresour Technol; 2008 Jul; 99(10):4420-7. PubMed ID: 17892931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of insoluble heavy metal sulfides from water.
    Banfalvi G
    Chemosphere; 2006 May; 63(7):1231-4. PubMed ID: 16297963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced azo dye wastewater treatment in a two-stage anaerobic system with Fe0 dosing.
    Liu Y; Zhang Y; Zhao Z; Li Y; Quan X; Chen S
    Bioresour Technol; 2012 Oct; 121():148-53. PubMed ID: 22858479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biological process that reduces metals in municipal sludge to yield sulphur enhanced biosolids.
    Seth R; Henry JG; Prasad D
    Environ Technol; 2006 Feb; 27(2):159-67. PubMed ID: 16506512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollutant removal within hybrid constructed wetland systems in tropical regions.
    Yeh TY; Wu CH
    Water Sci Technol; 2009; 59(2):233-40. PubMed ID: 19182332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of patent bio-rack wetland system using Phragmites sp. for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts.
    Valipour A; Raman VK; Ghole VS
    J Environ Sci Eng; 2011 Jul; 53(3):281-8. PubMed ID: 23029929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.
    Jiménez-Rodríguez AM; Durán-Barrantes MM; Borja R; Sánchez E; Colmenarejo MF; Raposo F
    J Hazard Mater; 2009 Jun; 165(1-3):759-65. PubMed ID: 19056169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.