BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23131622)

  • 21. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.
    Kaushik A; Kansal A; Santosh ; Meena ; Kumari S; Kaushik CP
    J Hazard Mater; 2009 May; 164(1):265-70. PubMed ID: 18809251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance evaluation of the Common Effluent Treatment Plant at Vapi (Gujarat, India).
    Shroff P; Vashi RT
    J Environ Sci Eng; 2011 Apr; 53(2):195-8. PubMed ID: 23033703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption of chromium, cadmium, and cobalt from aqueous solution by immobilized living cells of Chryseomonas luteola TEM 05.
    Baysal SH; Onal S; Ozdemir G
    Prep Biochem Biotechnol; 2009; 39(4):419-28. PubMed ID: 19739028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems.
    Stasinakis AS; Thomaidis NS; Mamais D; Lekkas TD
    Chemosphere; 2004 Dec; 57(9):1069-77. PubMed ID: 15504465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor.
    Taştan BE; Ertuğrul S; Dönmez G
    Bioresour Technol; 2010 Feb; 101(3):870-6. PubMed ID: 19773159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel hybrid nano zerovalent iron initiated oxidation--biological degradation approach for remediation of recalcitrant waste metalworking fluids.
    Jagadevan S; Jayamurthy M; Dobson P; Thompson IP
    Water Res; 2012 May; 46(7):2395-404. PubMed ID: 22365368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08.
    Uzel A; Ozdemir G
    Bioresour Technol; 2009 Jan; 100(2):542-8. PubMed ID: 18657416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater.
    Jamil TS; Ghaly MY; El-Seesy IE; Souaya ER; Nasr RA
    J Hazard Mater; 2011 Jan; 185(1):353-8. PubMed ID: 20926185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms.
    Fosso-Kankeu E; Mulaba-Bafubiandi AF; Mamba BB; Barnard TG
    J Environ Manage; 2011 Oct; 92(10):2786-93. PubMed ID: 21737198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of heavy metal ions from water by complexation-assisted ultrafiltration.
    Trivunac K; Stevanovic S
    Chemosphere; 2006 Jun; 64(3):486-91. PubMed ID: 16423376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavior of aromatic compounds contained in kraft mill effluents treated by an aerated lagoon.
    Chamorro S; Xavier CR; Vidal G
    Biotechnol Prog; 2005; 21(5):1567-71. PubMed ID: 16209564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioremediation of heavy metal toxicity from factory effluents by transconjugants bacteria.
    El-Zahrani HA; El-Saied AI
    J Egypt Soc Parasitol; 2011 Dec; 41(3):641-50. PubMed ID: 22435157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harmonisation of chemical and biological process in development of a hybrid technology for treatment of recalcitrant metalworking fluid.
    Jagadevan S; Dobson P; Thompson IP
    Bioresour Technol; 2011 Oct; 102(19):8783-9. PubMed ID: 21831632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerobic phenanthrene biodegradation in a two-phase partitioning bioreactor.
    Muñoz R; Rolvering C; Guieysse B; Mattiasson B
    Water Sci Technol; 2005; 52(8):265-71. PubMed ID: 16312976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Buildup of heavy metals in soil-water-plant continuum as influenced by irrigation with contaminated effluent.
    Sachan S; Singh SK; Srivastava PC
    J Environ Sci Eng; 2007 Oct; 49(4):293-6. PubMed ID: 18476378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM; Lam CS; Lai KC
    Water Res; 2006 Feb; 40(3):595-605. PubMed ID: 16406049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of waste iron metal for removal of Cr(VI) from water.
    Lee T; Lim H; Lee Y; Park JW
    Chemosphere; 2003 Nov; 53(5):479-85. PubMed ID: 12948531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria.
    Kieu HT; Müller E; Horn H
    Water Res; 2011 Jul; 45(13):3863-70. PubMed ID: 21632086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced treatment of high strength opium alkaloid industry effluents.
    Aydin AF; Altinbas M; Sevimli MF; Ozturk I; Sarikaya HZ
    Water Sci Technol; 2002; 46(9):323-30. PubMed ID: 12448485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.