These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23131622)

  • 41. Laboratory scale and pilot plant study on treatment of toxic wastewater from the petrochemical industry by UASB reactors.
    Stergar V; Zagorc-Koncan J; Zgajnar-Gotvanj A
    Water Sci Technol; 2003; 48(8):97-102. PubMed ID: 14682575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata): implications of redox insensitive end products.
    Gomes PI; Asaeda T
    Chemosphere; 2013 Aug; 92(10):1328-34. PubMed ID: 23773443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor.
    Colussi I; Cortesi A; Della Vedova L; Gallo V; Robles FK
    Bioresour Technol; 2009 Dec; 100(24):6290-4. PubMed ID: 19679466
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi.
    Prigione V; Zerlottin M; Refosco D; Tigini V; Anastasi A; Varese GC
    Bioresour Technol; 2009 Jun; 100(11):2770-6. PubMed ID: 19211244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors.
    Papadimitriou CA; Samaras P; Sakellaropoulos GP
    Bioresour Technol; 2009 Jan; 100(1):31-7. PubMed ID: 18650084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of Trapa bipinosa for the treatment of pulp and paper industry effluent.
    Kousar H; Puttaiah ET
    J Environ Biol; 2009 Sep; 30(5):659-61. PubMed ID: 20136044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of chromium (VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent.
    Srivastava J; Chandra H; Tripathi K; Naraian R; Sahu RK
    J Basic Microbiol; 2008 Apr; 48(2):135-9. PubMed ID: 18383226
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals.
    Rehman A; Shakoori FR; Shakoori AR
    Bioresour Technol; 2008 Jun; 99(9):3890-5. PubMed ID: 17888657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions.
    Abinaya Sindu P; Gautam P
    Can J Microbiol; 2017 Jan; 63(1):61-73. PubMed ID: 27958773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors.
    Ganguli A; Tripathi AK
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):416-20. PubMed ID: 11935196
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.
    Gheju M; Balcu I
    J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity.
    Viti C; Pace A; Giovannetti L
    Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of solvents on metal ion adsorption by the alga Chlorella vulgaris.
    Al-Qunaibit M; Khalil M; Al-Wassil A
    Chemosphere; 2005 Jul; 60(3):412-8. PubMed ID: 15924961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid removal of lead and cadmium from water by specific lactic acid bacteria.
    Halttunen T; Salminen S; Tahvonen R
    Int J Food Microbiol; 2007 Feb; 114(1):30-5. PubMed ID: 17184867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.
    Barrera-Díaz CE; Lugo-Lugo V; Bilyeu B
    J Hazard Mater; 2012 Jul; 223-224():1-12. PubMed ID: 22608208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial biomass: an economical alternative for removal of heavy metals from waste water.
    Gupta R; Mohapatra H
    Indian J Exp Biol; 2003 Sep; 41(9):945-66. PubMed ID: 15242288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mathematical modeling of Fe(II), Cu(II), Ni(II) and Zn(II) removal in a horizontal rotating tubular bioreactor.
    Rezić T; Zeiner M; Santek B; Novak S
    Bioprocess Biosyst Eng; 2011 Nov; 34(9):1067-80. PubMed ID: 21678044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microorganisms resistant to heavy metals and toxic chemicals as indicators of environmental pollution and their use in bioremediation.
    Riaz-ul-Haq ; Shakoori AR
    Folia Biol (Krakow); 2000; 48(3-4):143-7. PubMed ID: 11291540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.