These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23131634)

  • 1. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode.
    An J; Kim B; Nam J; Ng HY; Chang IS
    Bioresour Technol; 2013 Jan; 127():138-42. PubMed ID: 23131634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance variation according to anode-embedded orientation in a sediment microbial fuel cell employing a chessboard-like hundred-piece anode.
    An J; Nam J; Kim B; Lee HS; Kim BH; Chang IS
    Bioresour Technol; 2015 Aug; 190():175-81. PubMed ID: 25941759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of anode pretreatment on its microbial colonization.
    Liu JL; Lowy DA; Baumann RG; Tender LM
    J Appl Microbiol; 2007 Jan; 102(1):177-83. PubMed ID: 17184333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells.
    Morris JM; Jin S
    J Hazard Mater; 2012 Apr; 213-214():474-7. PubMed ID: 22402341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities.
    Hamdan HZ; Salam DA; Hari AR; Semerjian L; Saikaly P
    Sci Total Environ; 2017 Jan; 575():1453-1461. PubMed ID: 27720249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphase electrode microbial fuel cell system that simultaneously converts organics coexisting in water and sediment phases into electricity.
    An J; Moon H; Chang IS
    Environ Sci Technol; 2010 Sep; 44(18):7145-50. PubMed ID: 20687550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power.
    Feng C; Lv Z; Yang X; Wei C
    Phys Chem Chem Phys; 2014 Jun; 16(22):10464-72. PubMed ID: 24728040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell using marine sediment as bio-matrix.
    Liu Z; Li H; Liu J; Su Z
    J Appl Microbiol; 2008 Apr; 104(4):1163-70. PubMed ID: 18005344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving performance of MFC by design alteration and adding cathodic electrolytes.
    Jadhav GS; Ghangrekar MM
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):319-32. PubMed ID: 18438635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.
    Renslow R; Donovan C; Shim M; Babauta J; Nannapaneni S; Schenk J; Beyenal H
    Phys Chem Chem Phys; 2011 Dec; 13(48):21573-84. PubMed ID: 22052235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.
    Lee YS; An J; Kim B; Park H; Kim J; Chang IS
    PLoS One; 2015; 10(12):e0145430. PubMed ID: 26714176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses from freshwater sediment during electricity generation using microbial fuel cells.
    Hong SW; Chang IS; Choi YS; Kim BH; Chung TH
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):389-95. PubMed ID: 18751733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.
    Liu J; Qiao Y; Guo CX; Lim S; Song H; Li CM
    Bioresour Technol; 2012 Jun; 114():275-80. PubMed ID: 22483349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal.
    Guo W; Cui Y; Song H; Sun J
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1749-58. PubMed ID: 24535080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; Féron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.