These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Motion-Programmed Bar-Coating Method with Controlled Gap for High-Speed Scalable Preparation of Highly Crystalline Organic Semiconductor Thin Films. Lee SB; Kang B; Kim D; Park C; Kim S; Lee M; Lee WB; Cho K ACS Appl Mater Interfaces; 2019 Dec; 11(50):47153-47161. PubMed ID: 31762265 [TBL] [Abstract][Full Text] [Related]
4. Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating. Bulgarevich K; Sakamoto K; Minari T; Yasuda T; Miki K ACS Appl Mater Interfaces; 2017 Feb; 9(7):6237-6245. PubMed ID: 28117974 [TBL] [Abstract][Full Text] [Related]
5. Extreme Orientational Uniformity in Large-Area Floating Films of Semiconducting Polymers for Their Application in Flexible Electronics. Pandey M; Syafutra H; Kumari N; Pandey SS; Abe R; Benten H; Nakamura M ACS Appl Mater Interfaces; 2021 Aug; 13(32):38534-38543. PubMed ID: 34357757 [TBL] [Abstract][Full Text] [Related]
6. Low-Cost and Green Fabrication of Polymer Electronic Devices by Push-Coating of the Polymer Active Layers. Vohra V; Mróz W; Inaba S; Porzio W; Giovanella U; Galeotti F ACS Appl Mater Interfaces; 2017 Aug; 9(30):25434-25444. PubMed ID: 28685574 [TBL] [Abstract][Full Text] [Related]
7. Flexible Bottom-Gated Organic Field-Effect Transistors Utilizing Stamped Polymer Layers from the Surface of Water. Sung Y; Shin EY; Noh YY; Lee JY ACS Appl Mater Interfaces; 2020 Jun; 12(22):25092-25099. PubMed ID: 32362121 [TBL] [Abstract][Full Text] [Related]
8. Highly crystalline and uniform conjugated polymer thin films by a water-based biphasic dip-coating technique minimizing the use of halogenated solvents for transistor applications. Kwon EH; Jang YJ; Kim GW; Kim M; Park YD RSC Adv; 2019 Feb; 9(11):6356-6362. PubMed ID: 35517306 [TBL] [Abstract][Full Text] [Related]
9. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. Ge F; Liu Z; Lee SB; Wang X; Zhang G; Lu H; Cho K; Qiu L ACS Appl Mater Interfaces; 2018 Jun; 10(25):21510-21517. PubMed ID: 29873226 [TBL] [Abstract][Full Text] [Related]
10. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures. Xiao M; Jasensky J; Zhang X; Li Y; Pichan C; Lu X; Chen Z Phys Chem Chem Phys; 2016 Aug; 18(32):22089-99. PubMed ID: 27444705 [TBL] [Abstract][Full Text] [Related]
11. High-mobility ultrathin semiconducting films prepared by spin coating. Mitzi DB; Kosbar LL; Murray CE; Copel M; Afzali A Nature; 2004 Mar; 428(6980):299-303. PubMed ID: 15029191 [TBL] [Abstract][Full Text] [Related]
12. Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Wang B; Huang W; Lee S; Huang L; Wang Z; Chen Y; Chen Z; Feng LW; Wang G; Yokota T; Someya T; Marks TJ; Facchetti A Nat Commun; 2021 Aug; 12(1):4937. PubMed ID: 34400644 [TBL] [Abstract][Full Text] [Related]
13. Using a Flexible Fountain Pen to Directly Write Organic Semiconductor Patterns with Crystallization Regulated by the Precursor Film. Liu B; Wang J; Zhang G; Du G; Xia H; Deng W; Zhao X Small Methods; 2024 Jul; ():e2400098. PubMed ID: 39054724 [TBL] [Abstract][Full Text] [Related]
14. All-printed flexible organic transistors enabled by surface tension-guided blade coating. Pierre A; Sadeghi M; Payne MM; Facchetti A; Anthony JE; Arias AC Adv Mater; 2014 Aug; 26(32):5722-7. PubMed ID: 24941920 [TBL] [Abstract][Full Text] [Related]
15. Patterning organic semiconductors using "dry" poly(dimethylsiloxane) elastomeric stamps for thin film transistors. Briseno AL; Roberts M; Ling MM; Moon H; Nemanick EJ; Bao Z J Am Chem Soc; 2006 Mar; 128(12):3880-1. PubMed ID: 16551074 [TBL] [Abstract][Full Text] [Related]
16. Facile and Microcontrolled Blade Coating of Organic Semiconductor Blends for Uniaxial Crystal Alignment and Reliable Flexible Organic Field-Effect Transistors. Kim K; Hong J; Hahm SG; Rho Y; An TK; Kim SH; Park CE ACS Appl Mater Interfaces; 2019 Apr; 11(14):13481-13490. PubMed ID: 30874423 [TBL] [Abstract][Full Text] [Related]
17. High-Mobility Flexible Oxyselenide Thin-Film Transistors Prepared by a Solution-Assisted Method. Zhang C; Wu J; Sun Y; Tan C; Li T; Tu T; Zhang Y; Liang Y; Zhou X; Gao P; Peng H J Am Chem Soc; 2020 Feb; 142(6):2726-2731. PubMed ID: 31985227 [TBL] [Abstract][Full Text] [Related]
18. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates. Janneck R; Pilet N; Bommanaboyena SP; Watts B; Heremans P; Genoe J; Rolin C Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29024126 [TBL] [Abstract][Full Text] [Related]
19. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors. Kang M; Hwang H; Park WT; Khim D; Yeo JS; Kim Y; Kim YJ; Noh YY; Kim DY ACS Appl Mater Interfaces; 2017 Jan; 9(3):2686-2692. PubMed ID: 28032755 [TBL] [Abstract][Full Text] [Related]
20. Wafer-scale arrays of nonvolatile polymer memories with microprinted semiconducting small molecule/polymer blends. Bae I; Hwang SK; Kim RH; Kang SJ; Park C ACS Appl Mater Interfaces; 2013 Nov; 5(21):10696-704. PubMed ID: 24070419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]