These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 23132174)
1. CO2 capture in aqueous ammonia solutions: a computational chemistry perspective. Jackson P; Beste A; Attalla MI Phys Chem Chem Phys; 2012 Dec; 14(47):16301-11. PubMed ID: 23132174 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
3. Activation barriers and rate constants for hydration of platinum and palladium square-planar complexes: an ab initio study. Burda JV; Zeizinger M; Leszczynski J J Chem Phys; 2004 Jan; 120(3):1253-62. PubMed ID: 15268251 [TBL] [Abstract][Full Text] [Related]
4. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Pitonák M; Riley KE; Neogrády P; Hobza P Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830 [TBL] [Abstract][Full Text] [Related]
5. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling. Xie HB; Zhou Y; Zhang Y; Johnson JK J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers. Dahlke EE; Olson RM; Leverentz HR; Truhlar DG J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474 [TBL] [Abstract][Full Text] [Related]
7. Large-Sized Ammonia Clusters and Solvation Energies of the Proton in Ammonia. Malloum A; Fifen JJ; Conradie J J Comput Chem; 2020 Jan; 41(1):21-30. PubMed ID: 31568565 [TBL] [Abstract][Full Text] [Related]
8. O(3P) + CO2 collisions at hyperthermal energies: dynamics of nonreactive scattering, oxygen isotope exchange, and oxygen-atom abstraction. Yeung LY; Okumura M; Zhang J; Minton TK; Paci JT; Karton A; Martin JM; Camden JP; Schatz GC J Phys Chem A; 2012 Jan; 116(1):64-84. PubMed ID: 22185296 [TBL] [Abstract][Full Text] [Related]
9. Benchmark of density functional theory methods on the prediction of bond energies and bond distances of noble-gas containing molecules. Lai TY; Yang CY; Lin HJ; Yang CY; Hu WP J Chem Phys; 2011 Jun; 134(24):244110. PubMed ID: 21721615 [TBL] [Abstract][Full Text] [Related]
10. Assessment of density functionals with long-range and/or empirical dispersion corrections for conformational energy calculations of peptides. Kang YK; Byun BJ J Comput Chem; 2010 Dec; 31(16):2915-23. PubMed ID: 20564333 [TBL] [Abstract][Full Text] [Related]
11. Competition and interplay between σ-hole and π-hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with ammonia. Solimannejad M; Ramezani V; Trujillo C; Alkorta I; Sánchez-Sanz G; Elguero J J Phys Chem A; 2012 May; 116(21):5199-206. PubMed ID: 22506896 [TBL] [Abstract][Full Text] [Related]
12. Ab initio study of CO2 capture mechanisms in aqueous monoethanolamine: reaction pathways for the direct interconversion of carbamate and bicarbonate. Matsuzaki Y; Yamada H; Chowdhury FA; Higashii T; Onoda M J Phys Chem A; 2013 Sep; 117(38):9274-81. PubMed ID: 24003832 [TBL] [Abstract][Full Text] [Related]
13. Thermochemistry of Lewis adducts of BH3 and nucleophilic substitution of triethylamine on NH3BH3 in tetrahydrofuran. Potter RG; Camaioni DM; Vasiliu M; Dixon DA Inorg Chem; 2010 Nov; 49(22):10512-21. PubMed ID: 20932027 [TBL] [Abstract][Full Text] [Related]
14. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I). Hancock RD; Bartolotti LJ Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant potential of glutathione: a theoretical study. Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966 [TBL] [Abstract][Full Text] [Related]
16. Proton exchanges between phenols and ammonia or amines: a computational study. Lu YX; Zou JW; Jin ZM; Wang YH; Zhang HX; Jiang YJ; Yu QS J Phys Chem A; 2006 Jul; 110(29):9261-6. PubMed ID: 16854042 [TBL] [Abstract][Full Text] [Related]
17. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 Apr; 113(14):4538-43. PubMed ID: 19253989 [TBL] [Abstract][Full Text] [Related]
18. Computational methods to calculate accurate activation and reaction energies of 1,3-dipolar cycloadditions of 24 1,3-dipoles. Lan Y; Zou L; Cao Y; Houk KN J Phys Chem A; 2011 Dec; 115(47):13906-20. PubMed ID: 21967148 [TBL] [Abstract][Full Text] [Related]
19. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related]
20. Toward a small molecule, biomimetic carbonic anhydrase model: theoretical and experimental investigations of a panel of zinc(II) aza-macrocyclic catalysts. Koziol L; Valdez CA; Baker SE; Lau EY; Floyd WC; Wong SE; Satcher JH; Lightstone FC; Aines RD Inorg Chem; 2012 Jun; 51(12):6803-12. PubMed ID: 22671132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]